Proposition 3.3 Given A * B * C and A * C * D. Then B * C * D and A * B * D (see Figure 3.9).

PROOF:

PART 1:: Proof of B * C * D
(Note: This is copied from Greenberg, but has a clarification on the justification of step 3.)
(1) A, B, C, and D are four distinct collinear points (see Exercise 1).
(2) There exists a point E not on the line through A, B, C, D (Proposition 2.3).
(3) Consider line EC. Since (by PART 1 step (1)) AD meets this line in point C, points A and D are on opposite sides of EC.
(4) We claim A and B are on the same side of EC. Assume on the contrary that A and B are on opposite sides of $E C$ (RAA hypotheses).
(5) Then EC meets AB in a point between A and B (definition of "opposite sides").
(6) That point must be C (Proposition 2.1).
(7) Thus, $\mathrm{A} * \mathrm{C} * \mathrm{~B}$ but we are given $\mathrm{A} * \mathrm{~B} * \mathrm{C}$, which contradicts Betweenness Axiom 3.
(8) Hence, A and B are on the same side of EC (RAA conclusion).
(9) B and D are on opposite sides of EC (steps 3 and 8 and the corollary to Betweenness Axiom 4).
(10) Hence, the point C of intersection of lines EC and CD lies between B and D (definition of "opposite sides"; Proposition 2.1, i.e., that the point of intersection is unique).
(11) Therefore, $\mathrm{B} * \mathrm{C} * \mathrm{D}$.

PART 2:: Proof of A * B * D
(1) A, B, C, and D are four distinct collinear points (see Exercise 1).
(2) There exists a point E not on the line through A, B, C, D (Proposition 2.3).
(3) Consider line EB. Since (by PART 2 step (1)) AC meets this line in point B, points A and C are on opposite sides of EB .
(4) We claim C and D are on the same side of EB. Assume on the contrary that C and D are on opposite sides of EB (RAA hypotheses).
(5) Then EB meets CD in a point between C and D (definition of "opposite sides").
(6) That point must be B (Proposition 2.1).
(7) Thus, $\mathrm{C} * \mathrm{~B} * \mathrm{D}$ but from PART 1 we have $\mathrm{B} * \mathrm{C} * \mathrm{D}$, which contradicts Betweenness Axiom 3.
(8) Hence, C and D are on the same side of EB (RAA conclusion).
(9) A and D are on opposite sides of EB (steps 3 and 8 and the corollary to Betweenness Axiom 4).
(10) Hence, the point B of intersection of lines EB and AC lies between A and D (definition of "opposite sides"; Proposition 2.1, i.e., that the point of intersection is unique).
(11) Therefore, $A * B * D$.

COROLLARY. Given $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ and $\mathrm{B} * \mathrm{C} * \mathrm{D}$. Then $\mathrm{A} * \mathrm{~B} * \mathrm{D}$ and $\mathrm{A} * \mathrm{C} * \mathrm{D}$.

PROOF:

PART 3:: Proof of A * C * D
(1) By Betweenness Axiom 1, if A * $\mathrm{B}^{*} \mathrm{C}$, then A, B, and C are three distinct collinear points, and if B * $\mathrm{C} * \mathrm{D}$, then B, C, and D are distinct collinear points.
(2) Assume $A=D$.
(3) Thus, $\mathrm{D} * \mathrm{~B} * \mathrm{C}$ but we are given $\mathrm{B} * \mathrm{C} * \mathrm{D}$, which contradicts Betweenness Axiom 3.
(4) Hence, $\mathrm{A} \neq \mathrm{D}$, and $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are four distinct points.
(5) By Incidence Axiom 1, B and C uniquely determine a line, let's say l.
(6) By PART 3 step (1), A lies on the same line l as B and C , and D lies on the same line as B and C . So $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are distinct collinear points.
(7) There exists a point E not on the line through A, B, C, D (Proposition 2.3).
(8) Consider line EC. Since (by PART 4 step (1)) BD meets this line in point C, points B and D are on opposite sides of EC .
(9) We claim A and B are on the same side of EC. Assume on the contrary that A and B are on opposite sides of EC (RAA hypotheses).
(10) Then EC meets AB in a point between A and B (definition of "opposite sides").
(11) That point must be C (Proposition 2.1).
(12) Thus, $\mathrm{A} * \mathrm{C} * \mathrm{~B}$ but we are given $\mathrm{A} * \mathrm{~B} * \mathrm{C}$, which contradicts Betweenness Axiom 3.
(13) Hence, A and B are on the same side of EC (RAA conclusion).
(14) A and D are on opposite sides of EC (steps 3 and 8 and the corollary to Betweenness Axiom 4).
(15) Hence, the point C of intersection of lines EC and AD lies between A and D (definition of "opposite sides"; Proposition 2.1, i.e., that the point of intersection is unique).
(16) Therefore, $\mathrm{A} * \mathrm{C} * \mathrm{D}$.

PART 4:: Proof of A * B * D
(1) By PART 3 step (4 and 6), A, B, C, and D are distinct collinear points.
(2) Since $A * B * C$ is given and Part 3 proves $A * C * D$, then by Proposition 3.3, A* B * D.

