Proposition 3.6: Given $A * B * C$. Then B is in the only point common to rays $B A$ and $B C$, and ray $\mathrm{AB}=$ ray AC .

Proof: To prove the first statement of proposition 3.6 the following proof was developed.
There exist 3 collinear points $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ such that $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ and there exists a point P on the line $A C$ such that $P \neq B$, and P is on rays $B A \& B C$.

For P on ray BA either $\mathrm{P}=\mathrm{B}, \mathrm{P}=\mathrm{A}, \mathrm{B} * \mathrm{~A}^{*} \mathrm{P}$, or $\mathrm{B} * \mathrm{P}^{*} \mathrm{~A}$.
By (1) $\mathrm{P} \neq \mathrm{B}$ and if $\mathrm{P}=\mathrm{A}, \mathrm{B} * \mathrm{~A} * \mathrm{P}$, or $\mathrm{B} * \mathrm{P}^{*} \mathrm{~A}$ then P is not on ray BC
By (3) P cannot lie on both rays BA \& BC therefore P must equal B to be on both rays which refutes (1) (RAA).

Furthermore, to prove the second statement in Proposition 3.6, the following proof was developed.

Proof:

1. There exists three collinear points A, B, and C such that $A * B * C$, the following proof will show that $A B$ is a subset of $A C$ and that $A C$ is a subset of $A B$.
2. For P included in ray AB , either (a) $\mathrm{P}=\mathrm{A}$, (b) $\mathrm{P}=\mathrm{B}$, (c) $\mathrm{A} * \mathrm{P} * \mathrm{~B}$, (d) $\mathrm{A} * \mathrm{~B} * \mathrm{P}$.
3. For case $2 \mathrm{a} P$ is on ray AC by the definition of a ray.
4. For case $2 \mathrm{~b} P$ is on ray AC by $\mathrm{A}^{*} \mathrm{~B} * \mathrm{C}$ and the definition of a ray.
5. For case 2 c P is on the ray AC by $\mathrm{A}^{*} \mathrm{~B} * \mathrm{C}$ and Proposition 3.3 (either $\mathrm{A}^{*} \mathrm{P}^{*} \mathrm{C}$ or $\mathrm{A}^{*} \mathrm{C} * \mathrm{P}$).
6. For case $2 \mathrm{~d} P$ is on the ray AC by $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}$ and Proposition 3.3.
7. $\mathrm{By}(3),(4),(5),(6)$ set AB is a subset of AC proving the first assumption in (1).
8. For P included in ray AC , either (a) $\mathrm{P}=\mathrm{A}$,(b) $\mathrm{P}=\mathrm{C}$, (c) $\mathrm{A} * \mathrm{P} * \mathrm{C}$, (d) $\mathrm{A} * \mathrm{C}^{*} \mathrm{P}$.
9. For case $2 \mathrm{a} P$ is on ray AB by the definition of a ray.
10. For case $2 b \mathrm{P}$ is on ray AB by $\mathrm{A} * \mathrm{~B}^{*} \mathrm{C}$ and the definition of a ray.
11. For case $2 \mathrm{c} P$ is on the ray AB by $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ and Proposition 3.3 (either $\mathrm{A} * \mathrm{P} * \mathrm{~B}$ or $\mathrm{A} * \mathrm{~B} * \mathrm{P}$).
12. For case 2 d P is on the ray AB by $\mathrm{A}^{*} \mathrm{~B} * \mathrm{C}$ and Proposition 3.3.
13. $\mathrm{By}(9),(10),(11),(12)$ set AC is a subset of AB proving the second assumption in (1).
14. $\mathrm{By}(7)$ and (13) ray AB is congruent to ray AC .
