Proposition 4.7

Team Delta

Proposition 4.7: Hilbert's Euclidian parallel postulate if a line intersects one of two parallel lines, then it also intersects the other.
=>

Suppose 2 lines l and m are parallel, and a third line n intersects line m.
By proposition 2.5 there exists a unique point P incident with n and m.
The Hilbert axiom of parallelism explains that since m is incident with P , and l is parallel to m, then n is not parallel to l unless it is equal to m.

Therefore by definition of parallel n intersects m and l.
$<=$

Suppose there is a line l and a point P , not on l, such that m is incident with P, n is incident with P , and l is parallel to m.

Since n intersects m and because m is parallel to l, n must also intersect l. (By statement in proposition 4.7)

Therefore lines l and n are not parallel and line m is the unique line through P that is parallel to l, proving the Hilbert Euclidian parallel postulate.

