Proposition 4.9: Hilbert's Euclidean parallel postulate \Leftrightarrow if t is a transversal to l and m, $l \|_{m}$, and $t \perp l$, then $t \perp m$.

PROOF:

\Rightarrow

1) Suppose first that Hilbert's postulate holds.
2) Let t be a transversal to lines l and m and assume $t \perp l$.
3) Let A be the point of intersection between l and t, and let B be the point of intersection between m and t (by Proposition 4.7).
4) Let C be a distinct point on l, so $\mathrm{C} \neq \mathrm{A}$, and let D be any point on m on the opposite side of t from C .
5) $\angle \mathrm{CAB}$ is a right angle (by definition of perpendicular), so $\angle \mathrm{ABD}$ is also a right angle (by Proposition 4.8 and Proposition 3.15). Note: Proposition 4.8 proves that Hilbert's Euclidean parallel postulate is equivalent to the converse of the AIA Theorem (Theorem 4.1).
6) Therefore, $t \perp m$ (by definition of perpendicular).
\Leftarrow
7) Let l be a line and let B be a point not on l.
8) By Proposition 3.16, let t be a line perpendicular to l passing through B.
9) Consider two lines m and n through B and parallel to l. Therefore, by hypothesis, $t \perp n$ and $t \perp m$.
10) The perpendicular to t at B is unique (by Corollary to Theorem 4.1).
11) Therefore, $n=m$.

