Proof of Angle Ordering

Math 467 Writing Assignment 4

Daniel Woelfel

To assist in the proof, we will first prove a Lemma which is an analog of proposition 3.12:

Lemma. Given $\angle ABC \cong \angle DEF$, then for any ray \overrightarrow{BG} between \overrightarrow{BA} and \overrightarrow{BC} , there is a unique ray \overrightarrow{EH} between \overrightarrow{ED} and \overrightarrow{EF} such that $\angle GBC \cong \angle HEF$.

Proof. Assume that $AB \cong ED$ and $BC \cong EF$. By SAS, $\triangle ABC \cong \triangle DEF$. Then $AC \cong DF$ and $\angle BCA \cong \angle EFD$. By the crossbar theorem, \overrightarrow{BG} intersects AC. Let G be the point of intersection. By proposition 3.12, there is a point H between D and F such that $CG \cong EH$. By SAS, $\triangle CBG \cong \triangle FEH$. Therefore, $\angle GBC \cong \angle HEF$.

Proof of the angle ordering:

a. Exactly one of the following three conditions holds: $\angle ABC < \angle DEF$, $\angle ABC \cong \angle DEF$, or $\angle DEF < \angle ABC$

Proof. Suppose $\angle ABC < \angle DEF$, then there is a ray, \overrightarrow{EG} between \overrightarrow{DE} and \overrightarrow{EF} such that $\angle ABC \cong \angle GEF$.

If $\angle ABC \cong \angle DEF$, then $\angle DEF \cong \angle GEF$, a contradiction.

If $\angle ABC > \angle DEF$, then there is a ray \overrightarrow{BH} between \overrightarrow{BA} and \overrightarrow{BC} such that $\angle HBC \cong \angle DEF$. Now, $\angle ABC \cong \angle GEF$, and \overrightarrow{BH} is between \overrightarrow{BA} and \overrightarrow{BC} . By the lemma, there is a ray \overrightarrow{EI} between \overrightarrow{EG} and \overrightarrow{EF} such that $\angle HBC \cong \angle IEF$. But $\angle HBC \cong \angle DEF$, so we have $\angle IEF \cong \angle DEF$, $I \neq D$, a contradiction.

Similarly, if one of the cases holds, then the other two cannot hold.

Suppose that none of the three conditions hold. Then there is no ray \overrightarrow{EJ} emanating from E such that $\angle ABC \cong \angle JEF$, contradicting C-4. Therefore, exactly one of the conditions holds.

b. If $\angle ABC < \angle DEF, \angle DEF \cong \angle GHI$, then $\angle ABC < \angle GHI$.

Proof. Let $\angle ABC < \angle DEF$ and $\angle DEF \cong \angle GHI$. Then there is a ray \overrightarrow{EJ} between \overrightarrow{ED} and \overrightarrow{EF} such that $\angle ABC \cong \angle JEF$. By the lemma, there is a ray \overrightarrow{HK} between \overrightarrow{HI} and \overrightarrow{HG} such that $\angle JEF \cong \angle KHI$. But $\angle JEF \cong ABC$, so $\angle KHI \cong ABC$. Therefore, $\angle ABC < \angle GHI$.

c. If $\angle ABC > \angle DEF, \angle DEF \cong \angle GHI$, then $\angle ABC > \angle GHI$.

Proof. Let $\angle ABC > \angle DEF$ and $\angle DEF \cong \angle GHI$. Then there is a ray \overrightarrow{BJ} between \overrightarrow{BA} and \overrightarrow{BC} such that $\angle JBC \cong \angle DEF$. But $\angle DEF \cong \angle GHI$, so $\angle JBC \cong \angle DEF$. Therefore, $\angle ABC > \angle GHI$.

d. If $\angle ABC < \angle DEF, \angle DEF < \angle GHI$, then $\angle ABC < \angle GHI$.

Proof. Let J be a point such that $\angle JEF \cong \angle ABC$ and K be a point such that $\angle KHI \cong \angle DEF$. Let L be a point such that \overrightarrow{BA} is between \overrightarrow{BL} and \overrightarrow{BC} such that $\angle LBA \cong \angle DEJ$. Then $\angle LBC \cong \angle DEF \cong$ $\angle KHI$ by angle addition. Let M be a point such that \overrightarrow{BL} is between \overrightarrow{BM} and \overrightarrow{BC} such that $\angle MBL \cong \angle GHK$. Then $\angle MBC \cong \angle GHI$ by angle addition. Now $\angle ABC < \angle MBC$ and $\angle MBC \cong \angle GHI$, so $\angle ABC < \angle GHI$ by part (b).