Proof of Angle Ordering

Math 467 Writing Assignment 4

Daniel Woelfel

To assist in the proof, we will first prove a Lemma which is an analog of proposition 3.12:

Lemma. Given $\angle A B C \cong \angle D E F$, then for any ray $\overrightarrow{B G}$ between $\overrightarrow{B A}$ and $\overrightarrow{B C}$, there is a unique ray $\overrightarrow{E H}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}$ such that $\angle G B C \cong$ $\angle H E F$.

Proof. Assume that $A B \cong E D$ and $B C \cong E F$. By SAS, $\triangle A B C \cong \triangle D E F$. Then $A C \cong D F$ and $\angle B C A \cong \angle E F D$. By the crossbar theorem, $\overrightarrow{B G}$ intersects $A C$. Let G be the point of intersection. By proposition 3.12, there is a point H between D and F such that $C G \cong E H$. By SAS, $\triangle C B G \cong \triangle F E H$. Therefore, $\angle G B C \cong \angle H E F$.

Proof of the angle ordering:
a. Exactly one of the following three conditions holds: $\angle A B C<\angle D E F$, $\angle A B C \cong \angle D E F$, or $\angle D E F<\angle A B C$

Proof. Suppose $\angle A B C<\angle D E F$, then there is a ray, $\overrightarrow{E G}$ between $\overrightarrow{D E}$ and $\overrightarrow{E F}$ such that $\angle A B C \cong \angle G E F$.
If $\angle A B C \cong \angle D E F$, then $\angle D E F \cong \angle G E F$, a contradiction.
If $\angle A B C>\angle D E F$, then there is a ray $\overrightarrow{B H}$ between $\overrightarrow{B A}$ and $\overrightarrow{B C}$ such that $\angle H B C \cong \angle D E F$. Now, $\angle A B C \cong \angle G E F$, and $\overrightarrow{B H}$ is between $\overrightarrow{B A}$ and $\overrightarrow{B C}$. By the lemma, there is a ray $\overrightarrow{E I}$ between $\overrightarrow{E G}$ and $\overrightarrow{E F}$ such that $\angle H B C \cong \angle I E F$. But $\angle H B C \cong \angle D E F$, so we have $\angle I E F \cong \angle D E F, I \neq D$, a contradiction.
Similarly, if one of the cases holds, then the other two cannot hold.

Suppose that none of the three conditions hold. Then there is no ray $\overrightarrow{E J}$ emanating from E such that $\angle A B C \cong \angle J E F$, contradicting C-4. Therefore, exactly one of the conditions holds.
b. If $\angle A B C<\angle D E F, \angle D E F \cong \angle G H I$, then $\angle A B C<\angle G H I$.

Proof. Let $\angle A B C<\angle D E F$ and $\angle D E F \cong \angle G H I$. Then there is a ray $\overrightarrow{E J}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}$ such that $\angle A B C \cong \angle J E F$. By the lemma, there is a ray $\overrightarrow{H K}$ between $\overrightarrow{H I}$ and $\overrightarrow{H G}$ such that $\angle J E F \cong$ $\angle K H I$. But $\angle J E F \cong A B C$, so $\angle K H I \cong A B C$. Therefore, $\angle A B C<$ $\angle G H I$.
c. If $\angle A B C>\angle D E F, \angle D E F \cong \angle G H I$, then $\angle A B C>\angle G H I$.

Proof. Let $\angle A B C>\angle D E F$ and $\angle D E F \cong \angle G H I$. Then there is a ray $\overrightarrow{B J}$ between $\overrightarrow{B A}$ and $\overrightarrow{B C}$ such that $\angle J B C \cong \angle D E F$. But $\angle D E F \cong \angle G H I$, so $\angle J B C \cong \angle D E F$. Therefore, $\angle A B C>\angle G H I$.
d. If $\angle A B C<\angle D E F, \angle D E F<\angle G H I$, then $\angle A B C<\angle G H I$.

Proof. Let J be a point such that $\angle J E F \cong \angle A B C$ and K be a point such that $\angle K H I \cong \angle D E F$. Let L be a point such that $\overrightarrow{B A}$ is between $\overrightarrow{B L}$ and $\overrightarrow{B C}$ such that $\angle L B A \cong \angle D E J$. Then $\angle L B C \cong \angle D E F \cong$ $\angle K H I$ by angle addition. Let M be a point such that $\overrightarrow{B L}$ is between $\overrightarrow{B M}$ and $\overrightarrow{B C}$ such that $\angle M B L \cong \angle G H K$. Then $\angle M B C \cong \angle G H I$ by angle addition. Now $\angle A B C<\angle M B C$ and $\angle M B C \cong \angle G H I$, so $\angle A B C<\angle G H I$ by part (b).

