
Chapter 4

Outline of chapter

1. More standard geometry (interior and exterior angles, etc.)

2. Measurement (degrees and centimeters)

3. Statements equivalent to the parallel postulate

4. Saccheri and Lambert quadrilaterals (crucial for later chapters)

Additional neutral geometry

Proofs are in the book or will be assigned to future presentations by a team.

Assume a Hilbert plane (Axioms I, B, C). Continuity axioms will be specified
when needed.

Theorem 4.1 (AIA): Given two lines cut by a third line, if a pair of alternate
interior angles are congruent, then the two lines are parallel. [figure to clarify
terminology]

Remarks: The converse is not true in hyperbolic geometry. The theorem itself
is not true in elliptic geometry (sphere or projective plane).

Proof [do!] uses B-4 (plane separation) and I-1 (uniqueness of the line through
2 points, in the form of its dual, Prop. 2.1).

Corollary 1: (a) Two lines perpendicular to the same line are parallel. (b)
The perpendicular from P to l is unique.

Corollary 2: Given l and P not on l, there exists at least one line through P
parallel to l.

Remark: This is a striking result! It says that “elliptic parallelism” is in-
consistent with the Hilbert axioms. There are two natural candidates for elliptic
geometry: the sphere (with the great circles as the lines) and the projective plane
(the sphere with antipodal points identified). Since two great circles intersect at
their two “poles”, the sphere violates I-1. The projective plane restores I-1 but
violates B-4: a line no longer has two separate sides. Also, both proposed models
(interpretations) violate B-3: 3 collinear points lie on a circle, so none of them can
be distinguished as “between” the other two.
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Theorem 4.2 (EA): An exterior angle of a triangle (supplementary to one of
its interior angles) is greater than either remote interior angle.

Corollary 1: If one angle is right or obtuse, the other two are acute.

Prop. 4.1: SAA congruence criterion. (Proof in exercise section.)

Prop. 4.2 (hypotenuse-leg criterion): Two right triangles are congruent if
the hypotenuse and one leg of one are respectively congruent to those of the other.
[team or homework]

Now we recover some of the things we reviewed from edge-and-compass con-
structions in Chap. 1:

Prop. 4.3 Every segment has a unique midpoint. [team]

Prop. 4.4 (a) An angle has a unique bisector. (b) A segment has a unique
perpendicular bisector. [same team]

Prop. 4.5: In a triangle the greater angle lies opposite the greater side and
the greater side lies opposite the greater angle. [team]

(This settles a point that bedeviled us in trying to prove SSS.)

Prop. 4.6: Given two triangles (primed and unprimed), if AB ∼= A′B′ and BC
∼= B′C′, then angle B < angle B′ ⇐⇒ AC < A′C′. [team]

Measurement (rulers and protractors at last!)

Why were the Greek geometers so leery of assigning numbers to lengths and
angles? The stock explanation (probably further oversimplified by me) is that they
had no concept of the real-number continuum; in the early days they tried to think
of lines as made up of evenly spaced discrete points, but Zeno’s paradoxes and
the irrationality of

√
2 convinced them that their concepts of measurement were

hopelessly inconsistent. The most they were willing to countenance was statements
like “segment CD is congruent to the sum of five segments congruent to AB” or “
. . . to the sum of five segments congruent to AB and one segment smaller than
AB.” The Axiom of Archimedes states that two segments can always be compared
in this way. Nowadays we would choose one favorite segment and define it to be
the unit of length to be used in all such comparisons. The situation for angles is
similar, except that there is a natural unit, the right angle, which we arbitrarily
divide by 90 (thanks to the Babylonians) for convenience.

Remark: All such historical remarks found in books or lectures by nonhistorians
should be regarded with skepticism. For one thing, Greek geometry extended from
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Thales (c. 600 BC) to Proclus (after 400 AD) — 1000 years. So saying “The Greeks
believed . . . ” is like saying “The French believed . . . ” without specifying whether
you’re talking about Charlemagne or Marie Curie.

Measurement Theorem 4.3 describes the success of this program. The
theorem assumed the Archimedes axiom; Dedekind’s (stronger) is needed for two
parts, the existence of lengths and angles corresponding to each real number in the
appropriate range (e.g., lengths must be positive).

I shall not copy this lengthy theorem verbatim from the book. Instead, for
variety, let’s rearrange it to emphasize to what degree it treats angles and lengths
in parallel:

There is a unique way of assigning a degree measure to each angle so that the

following list of properties will hold; and, given a segment OL called a unit segment,
there is a unique way of assigning a length to each segment so that the following

list of properties will hold.

(0,7): ( 6 A)◦ is a real number between 0 and 180◦; and AB is a positive real number.

(1.7): ( 6 A)◦ = 90◦ if and only if 6 A is a right angle; and OI = 1.

(2,8): ( 6 A)◦ = ( 6 B)◦ iff 6 A ∼= 6 B; and AB = CD iff AB ∼= CD.

(3,9): If
→

AC is interior to 6 DAB, then ( 6 DAB)◦ = ( 6 DAC)◦ + ( 6 CAB)◦; and
A ∗B ∗ C iff AC = AB +BC.

(6, 10): ( 6 A)◦ > ( 6 B)◦ iff 6 A > 6 B; and AB < CD iff AB < CD.

(4,11): (Under the assumption of Dedekind’s axiom) For every real number x between
0 and 180, there exists an angle such that ( 6 A)◦ = x◦; and for every positive
real number x, there exists a segment such that AB = x.

(5): If 6 B is supplementary to 6 A, then ( 6 A)◦ + ( 6 B)◦ = 180◦.

Complementary angles can now be defined in the usual way, as angles that
sum to 90◦. (Actually, it could have been done earlier, using Props. 3.19 and 3.20
and Euclid IV. See Ex. 33(a).)

Corollary 2: The sum of any two angles of a triangle is less than 180◦.

Triangle Inequality: Any side of a triangle is less [in length] than the sum
of the lengths of the other two sides.

Remark: To state this theorem, Euclid had to construct a segment with pieces
congruent to the two sides.
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Corollary (converse to the triangle inequality): Circle-circle continuity
⇐⇒ Given 3 lengths with the sum of any two greater than the third, there exists
a triangle whose sides have those lengths.

Propositions equivalent to the Euclidean parallel postulate

Recall:

Hilbert’s Euclidean parallel postulate (HE): For every l and every P not
on l, there is at most one line through P and parallel to l (and hence exactly one,
by Corollary 2 to AIA).

Euclid’s original fifth postulate (EV): Given two lines and a transversal,
if the two interior angles on one side add to less than two right angles, then the two
lines intersect on that side of the transversal.

Remark: Greenberg formulates EV and the next proof in terms of degree mea-
sure, presumably to emphasize that angle addition in purely Euclidean terms re-
quires a step of angle transplantation by C-4 and Prop. 3.19.

Theorem 4.4: HE ⇐⇒ EV.

[Go through proof from book.]

Prop. 4.7: HE ⇐⇒ If a line intersects one of two parallel lines, then it
intersects the other. [team]

Corollary: Parallelism is a transitive relation.

Prop. 4.8: HE ⇐⇒ converse of AIA. [team]

Note: Converse AIA excludes hyperbolic geometry, just as AIA itself excludes
elliptic geometry.

Prop. 4.9: HE ⇐⇒ If t is a transversal to parallels l and m, and t ⊥ l, then
t ⊥ m. [team]

Prop. 4.10: HE ⇐⇒ If k ‖ l, m ⊥ k, and n ⊥ l, then either m = n or m ‖ n.
[team]

Note that the following two are one-way implications:

Prop. 4.11: HE ⇒ The three angles of a triangle sum to 180◦.

[Go through proof from book.]
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Corollary: HE ⇒ An exterior angle of a triangle is equal to the sum of the
remote interior angles.

Saccheri and Lambert quadrilaterals

Def. Q (p. 44): Given four points A, B, C, D such that

(i) no three of the points are collinear, and

(ii) any pair of the specific segments AB, BC, CD, and DA either have no point in
common or have only an endpoint in common,

the quadrilateral ABCD “consists of” these four segments.

Remarks:

1. Greenberg doesn’t make clear whether a quadrilateral is a set of four segments
or a set of points, the union of those segments. It makes no difference concep-
tually, but would make technical differences in the truth or falsity of certain
statements (much as in the homework question “Is a triangle convex?”). Let’s
say it is the set of segments.

2. The order of the points matters! The next definition makes it matter even
more.

Definitions S: ABDC is bi-right if angle A and angle B (which must be adja-
cent!) are both right angles; it is isosceles if AC ∼= BD; it is a Saccheri quadrilateral
if both bi-right and isosceles. AB is called the base, CD is called the summit, AC
and BD are called the sides, and angles C and D are called summit angles.

Def. L: A quadrilateral with (at least) 3 right angles is a Lambert quadrilateral.
The “fourth angle” means whichever angle is not already known to be right by
hypothesis.

Prop. 4.12: (a) The summit angles of a Sac. quad. are congruent. (b) The line
joining the midpoints of the summit and the base is perpendicular to both those
segments.

The proof of 4.12 is a routine exercise in congruent triangles. It would be very
surprising if the theorem were not true, since that would indicate an asymmetry
of space. But spatial symmetry is not one of our axioms; it is implicit there, and
gradually being revealed.

Corollary: (See Fig. 4.15.) The line in 4.12(b) divides the Sac. quad. into
two Lam. quads. with fourth angle equal to the summit angle. Conversely, a Lam.
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quad. can be doubled to form a Sac. quad. by reflecting it through either of the
sides that are not part of the 4th angle.

We expect: HE ⇒ all Lam. quads. and Sac. quads. are rectangles! This will
become clear in due course.

Prop. 4.13: In any bi-right quad., the greater side is opposite the greater
angle.

[Important proof, pp. 178–179. The RAA can be replaced by a trichotomy
argument.]

Corollaries 1 and 2: (See Figs. 4.17–18, pp. 179–180.) Perpendicular seg-
ments from one side of an acute angle to the other increase as one moves away from
the vertex. Then EV ⇒ Aristotle’s Axiom (p. 133) (because then the starting
segment can be chosen arbitrarily long). I.e., the segments increase unboundedly.
Comment on Greenberg’s proof: Given the angle and the (unrelated) segment,
construct the complementary angle α∗, then use C-4 to attach it to the segment.

Remark: When Greenberg says that Aristotle’s axiom is a consequence of
Dedekind’s or Archimedes’s axiom, he means a consequence of that and the other

Hilbert axioms. In my opinion Aristotle is not really a “continuity axiom”, although
it requires some continuity principle for its proof (which shows up in Ch. 5, Exer-
cise 2). It is one of the many principles that exclude the standard elliptic geometries.
Note that it is consistent with hyperbolic parallelism, so Aristotle does not imply
EV.

Corollary 3: A side adjacent to the fourth angle θ of a Lam. quad. is







>
∼=
<







its opposite side when θ is
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.

Corollary 4: The summit of a Sac. quad. is







>
∼=
<







the base when the summit

angle is







acute
right
obtuse







.

Uniformity theorem: If one Sac. quad. has acute summit angles, then so do
all. Same for right and obtuse, and for fourth angles of Lam. quads.

The proof occupies 4 major exercises, the last of which is easy. I will endorse
consortia of 3 people to do these as their second papers. Rules: Each of the three
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papers must have a (distinct) primary author who takes responsibility for
writing that paper. Some joint work on the mathematical content is expected.
Each paper should start with the label “Part of a joint project with [the other three
names].”

Definition: A Hilbert plane is semi-Euclidean if all Lam. (and Sac.) quads.
are rectangles. If the fourth Lam. angle is acute, we say the plane satisfies the acute
angle hypothesis (and similarly for obtuse).

Corollary: Rectangles exist iff the plane is semi-Euclidean; opposite sides are
always congruent.

More corollaries pp. 182–183 just repeat previous propositions in the uniformed
contexts.

Saccheri’s Angle Theorem: In a Hilbert plane,

(a) ∃∆ : angle sum < 180◦ ⇐⇒ ∀∆ : angle sum < 180◦ ⇐⇒ acute angle hyp.

(b) Same for = 180◦ and semi-Euclidean.

(c) Same for > 180◦ and obtuse.

Saccheri–Legendre Theorem: Archimedes’s Axiom ⇒ angle sums ≤ 180◦

(hence refuting the obtuse angle hypothesis).

(This is no big surprise, since we expect the obtuse angle case to correspond
to elliptic geometry, which we already know to be inconsistent with the Hilbert
axioms.) Greenberg shows that Archimedes can be replaced by Aristotle.

I postpone the discussion of Dehn’s models until the end of Chapter 6.
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