
Chapter 7

Implications of consistency of hyperbolic geometry

First recall the discussion ofmodels of incidence geometry in Chapter 2. Taking
any set of N points (N ≥ 3) and defining lines as 2-point subsets, we get a model, or
instance, of the three I axioms. The models for different Ns are not the same (not
isomorphic); this shows that the axioms do not completely characterize the system.
We might try to make the model unique by adding an axiom, say the Euclidean
parallel axiom (p. 73):

For every line l and every point P not lying on l
there is a unique line through P and parallel to l. (EP)

In fact, that works (if we also require every line to have exactly 2 points), because
then N = 4.

The fact that EP does not hold when N 6= 4 shows that it is impossible to
prove EP from the other axioms. One says that EP is independent of the other
axioms of incidence geometry. Put another way: incidence geometry along with,
say, the hyperbolic parallel property is consistent, because the finite geometry with
N = 7, for instance, is a model for it.

This argument is convincing because we feel that we completely understand
finite sets. We have no fear that our theory of finite sets of points is itself wrong
or inconsistent. That situation changes when infinite sets come into the picture.
The Hilbert axioms imply infinite planes, either Euclidean or hyperbolic; we must
fearlessly investigate their consistency. The implications are somewhat different
depending on a distinction we made on the first day.

1. Geometry as abstract mathematics. We shall see that there are models
within R3 or even R2 that satisfy the postulates of hyperbolic geometry (Hilbert
IBC + HH (p. 259) + Dedekind). We get to details around pp. 329–330. (Recall
that HH hypothesis is actually equivalent to ¬HE when we assume Dedekind — see
p. 262.) The existence of these models shows that hyperbolic geometry is consistent
if our theory of Rn is (the latter needing the real numbers and hence some level
of set theory). That is, elementary linear algebra establishes the consistency of
hyperbolic geometry just as surely as that of Euclidean geometry — which it does,
because R2 itself is a model of (Hilbert) Euclidean geometry (pp. 139–140 and the
Chapter 3 projects), and a similar statement can be made about R3. In fact, the
hyperbolic models can be developed within axiomatic Euclidean geometry, so we
don’t really need the consistency of the real numbers to reach the conclusion, just
consistency of Euclidean geometry.
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An ironic consequence of the foregoing is that HE/EV can’t be proved within
the Hilbert axioms + Dedekind (or your favorite continuity axiom), unless Euclidean
geometry itself is inconsistent. In other words, if Saccheri et al. had succeeded in
“vindicating” Euclid by proving EV, they would have destroyed Euclidean geometry
by proving it inconsistent.

Note that in these models the primitives (especially “straight line” and “con-
gruent”) are reinterpreted to mean something rather different than they mean in
the embodying Euclidean spaces. This may leave the impression that the “true” ge-
ometry of a plane really is Euclidean, and hyperbolic geometry describes something
different, so why the big deal? If you define Euclidean geometry as the geometry
of the vector space R2 with its standard inner product, no one can argue with
you. The independence of the parallel postulate is supremely important for the
axiomatic logic of traditional geometry, but it says nothing to disturb the validity
and completeness of linear algebra.

2. Geometry as a description of the world. On the other hand, now
that we know that HE/EV is not inevitable, or built into the framework of the
human mind so that denying it is inconceivable (as so many mathematicians and
philosophers used to say), whether the geometry of physical space is Euclidean
becomes an experimental question. Logically, it is entirely possible that space is
hyperbolic, this time with the primitives meaning (almost) exactly what they always
have in Euclidean thinking.

In fact, in modern physical theory (general relativity, cosmology) space is some-
thing even more general, not homogeneous (i.e., may be different in different regions)
and possibly changing in time. It can be “bumpy” as well as curved (see the begin-
ning of Chap. 8 and the end of Appendix A). In other words, nature is not exactly
described by the R3 geometry given by linear algebra. On the small scale, planets
etc. create bumps in the geometry, and the influence of the bumps on moving bodies
constitutes the gravitational force of the planets. Gravity = nonhomogeneous ge-
ometry. On the large scale, however, current observational evidence indicates that
the average curvature of the observable universe is very close to flat; but there is
no good theoretical reason why that must be true, and elliptic (usually spherical)
and hyperbolic 3-spaces are frequently studied by serious physicists. (Because the
universe is expanding, the geometry of four-dimensional space-time is not flat.)

Beltrami’s four models of hyperbolic geometry

1. The pseudosphere or tractrix model (postpone)

2. Klein’s disk model

3. Poincaré’s disk model
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4. Poincaré’s upper half plane model

And for completeness, recall

5. Hyperboloid model.

Numbers 1 and 5 in this list are surfaces in a higher-dimensional space. The other
three are maps of the hyperbolic space onto a part of the flat 2-dimensional plane.

The Klein disk — introduction

In this model the lines are the line segments across the disk (chords). We have
already encountered this model in Ex. 2.9(c). There we considered incidence and
parallelism only. Betweenness is also elementary, but congruence is nonstandard
(i.e., segments of equal length don’t appear to be of equal length to our Euclidean
eyes, and similarly for angles); it turns out to be most convenient to delay the
discussion of congruence until after studying the Poincaré disk. There are many
parallel chords to a given chord through a point, so this is a promising model of
hyperbolic geometry.

If A and B are points on the bounding circle, the chord between them is denoted
A)(B. A and B are ideal points or points at infinity — not themselves points in the
hyperbolic plane. The chord connecting them is called line of enclosure of any angle
leading to them, hence fulfilling the Warning on p. 115 (see Fig. 7.5, p. 300). The
extended sides of the angle are the limiting parallel rays to A)(B from the vertex
of that angle.

The proof of I-1 requires line-circle continuity. For purposes of this course we
might as well assume that we are in the real Euclidean plane, so that Dedekind’s
axiom holds (for lines and for chords). The rest of I and B are left for an exercise.
The C axioms will be proved indirectly after we study the Poincaré model.

The Poincaré disk – derivation

In the Klein model lines are straight, but lengths and angles are nonstandard.
In the Poincaré model lines are curved, lengths are nonstandard, but angles are the
same as in the Euclidean geometry of the plane containing the disk; such a model is
called conformal. (A Mercator map has similar properties for a spherical geometry.)

Let us start with the known metric of the hyperboloid,

ds2 = R2(dr2 + sinh2 r dθ2) (take R = 1),
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and perform a rescaling of the radial coordinate (i.e., r = function of ρ and vice
versa) to map the hyperboloid to the interior of a disk in such a way that the result
is conformal:

ds2 = f(ρ)2(dx2 + dy2) ≡ f(ρ)2(dρ2 + ρ2dθ2).

That is, the coordinate system looks Cartesian at each point but the scale can
vary from point to point. Remember that such formulas are shorthand for integral
formulas for arc length:

s =

∫ τf

τ0

f(ρ(τ))

√

(

dρ

dτ

)2

+ ρ(τ)2
(

dθ

dτ

)2

dτ .

They also tell us how to calculate angles. The cosine of the angle between two
vectors (∆x1,∆y1) and (∆x2,∆y2) is, as in ordinary vector calculus, the ratio of
the dot product of the vectors as defined by the the metric ds2 divided by the
product of the lengths of the vectors:

f(ρ)2(∆x1∆x2 +∆y1∆y2)
√

f(ρ)2(∆x1
2 +∆y12)

√

f(ρ)2(∆x2
2 +∆y22)

,

Since the scale factor cancels out, this angle is the same as in the Euclidean geom-
etry, where f(ρ) = 1. This justifies the earlier claim that conformality in the sense
of a scale factor implies conformality in the sense of preserving angles.

Comparing the two formulas for ds2, we see that we must have

sinh2 r = f(ρ)2ρ2 and f(ρ)2 =
dr2

dρ2
≡

(

dr

dρ

)2

.

Thus
dr

dρ
= ±f(ρ) = ± sinh r

ρ
,

or
dr

sinh r
= ± dρ

ρ
,

or
ln tanh

( r

2

)

+ c = ± ln ρ.

Thus either ρ or 1/ρ equals C tanh(r/2). We want ρ = 0 when r = 0 and ρ = 1
when r → ∞, so we choose

ρ = tanh
(r

2

)

.

It follows that

r = 2 tanh−1 ρ = ln

(

1 + ρ

1− ρ

)

.
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Finally,

f(ρ) =
sinh ln

(

1+ρ
1−ρ

)

ρ
=

1+ρ
1−ρ

− 1−ρ
1+ρ

2ρ
=

1 + 2ρ+ ρ2 − (1− 2ρ+ ρ2)

2ρ(1− ρ2)
=

2

1− ρ2
.

Therefore,

ds2 =
4

(1− ρ2)2
(dρ2 + ρ2dθ2).

It is standard to drop the factor 4, which amounts to starting with R = 1

2

instead of 1. Thus we get the standard metric for the Poincaré disk,

ds2 =
dx2 + dy2

[1− (x2 + y2)]2
.

(This equation appears in the middle of p. 565 in a complex-variable notation.)

Lines and lengths in the Poincaré model

The ratio between hyperbolic length and Euclidean length rapidly diminishes
as one approaches the bounding circle, γ. We have the situation indicated in the
Escher drawing on the cover of the book, with infinite crowding near the edge.
(Recall: the angles equal the Euclidean angles.)

Although I can’t prove it by elementary means, the geodesics in this geometry
are circular arcs orthogonal to γ at both ends; these include straight lines that
are diameters of the circle. (Later I will prove the corresponding theorem for the
Poincaré half-plane model.) There result the Figures on pp. 304–305 of limiting rays,
divergent parallels, and Lambert and Saccheri quadrilaterals. Two other Eschers
(nos. 22 and 24 in The Graphic Work of M. C. Escher) show the circles (lines)
better than no. 23.

A geometrical development of the notions of length and congruence in the
Poincaré model occupies the (hard!) second half of Chapter 7. The upshot is that
the Hilbert congruence axioms can be verified for this model. We shall also see
that the Poincaré model can be mapped onto the Klein model or vice versa, so the
C axioms transfer from Poincaré to Klein while the I and B axioms transfer from
Klein to Poincaré. This will complete the proof that both disk systems are indeed
models of hyperbolic geometry (as axiomatized by Hilbert). Therefore, hyperbolic
geometry is consistent if Euclidean geometry is.

The Poincaré distance is defined on pp. 319–320: Let A and B be points in
the interior; let P and Q be the endpoints (on γ) of the corresponding Poincaré
line (Fig 7.27). For any pair of these points, define AB, etc., to be the ordinary
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Euclidean distance between them (measured along a Euclidean straight line, not
a Poincaré line). For the moment consider the case Q * A * B * P, Then the
cross-ratio

(AB,PQ) ≡ AP BQ

BP AQ

is greater than 1. The Poincaré distance from A to B is then defined to be the
logarithm of (AB,PQ). If we interchange A with B, or P with Q, the cross-ratio is
inverted, so it’s now less than 1 and its logarithm is the negative of the previous
case. So

d(AB) ≡ | ln(AB,PQ)|

is a formula that applies equally in the case P * A * B * Q. A short calculation
shows that if A * C * B, then d(AC)+d(CB) = d(AB), so distance is additive along
a line, as required by Axiom C-3.

Lemma 7.4 on p. 328 shows that if O is the center and d(OB) = r, then r is
related to the Euclidean length of OB by

ρ ≡ OB =
er − 1

er + 1
= tanh

( r

2

)

.

(Here I take the radius of γ to be 1; Greenberg calls the radius r and the distance d.)
The inverse of this formula is

r = ln
1 + ρ

1− ρ
,

a formula we got earlier for the coordinate transformation. This confirms that
the two definitions of Poincaré distance are the same, at least for lines through
the center. (For the general case, see the paper by Zahar cited below.) In our
coordinate calculation, ρ was the radial coordinate in the underlying Euclidean
disk, hence indeed equal to the Euclidean length of OB, whereas r was the radial
coordinate in the hyperboloid representation,

ds2 = R2(dr2 + sinh2 r dθ2),

from which it’s clear that r is the hyperbolic length of OB. [What happened to the
factor R2 = 1

4
?]

For segments without an endpoint at the center, the cross-ratio gives a
coordinate-independent (albeit inscrutable) definition of the length, while any of
our formulas for ds2 gives a coordinate-dependent formula for the same length as
an integral along the Poincaré line (circular arc as a geodesic curve). Obviously, arc
lengths defined by such integrals are additive:

∫ B

A

ds =

∫ C

A

ds+

∫ B

C

ds.
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Now consider the six congruence axioms in the Poincaré model. C-5 and C-4
are immediate, because angles are equal to Euclidean angles. (For C-4, Greenberg
p. 319 gives a detailed constructive justification of the existence and uniqueness of
the geodesic with a given direction at a given point.) Similarly, C-2, C-3, and C-1
are immediate from the definition of length: “Having the same numerical length”
is obviously an equivalence relation for segments (C-2). We have already shown
additivity (C-3) two ways. C-1 requires us to note that the Poincaré lines are
infinite in extent (as measured by arc length), which is obvious from the hyperboloid
representation. That leaves C-6, SAS, which is much harder, but can be proved
(pp. 327–328) by reducing to a triangle with one vertex at the origin and using the
formula relating r to ρ. This also completes the proof that Poincaré length is the
same thing as hyperbolic arc length, even for lines that don’t go through the origin.

Isomorphisms between the Klein and Poincaré models

My favorite is on pp. 334–335. It shows that a Klein line can be regarded as
a Poincaré line just straighened out! The precise construction involves projecting
from north pole to southern hemisphere and then vertically back to the equatorial
plane.

The alternative construction is on p. 306. It is the same, except that the plane
involved is tangent to the south pole instead of through the equator. This makes
the Poincaré disk twice as big. [Hmm. Maybe that has something to do with the
missing factor of 4 = 22 noticed earlier.] Now projecting from a point on the equator
(instead of north pole) yields the next model:

Poincaré’s half-plane model

There is a conformal (angle-preserving) mapping of a half plane onto the unit
disk (or vice versa). Such mappings are most easily described in terms of complex
variables. Let z = x+ iy, w = u+ iv. Then

z =
w − 1

w + 1

maps the right half plane onto the unit disk: If u = 0 (i.e., w is on the imaginary
axis), then z = (iv − 1)/(iv + 1) which is easily seen to lie on the unit circle. If
u > 0, then z has absolute value less than 1 — it is inside the disk. Note that

w = 0 ⇒ z = −1, w = 1 ⇒ z = 0, w → ∞ ⇒ z → 1.

It is well known (to students in a complex-variables course) that such a
fractional-linear (Möbius) transformation is conformal.
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In real terms,

x+ iy =
u− 1 + iv

u+ 1 + iv
=

[u− 1 + iv][u+ 1− iv]

(u+ 1)2 + v2
=

u2 + v2 − 1 + 2iv

(u+ 1)2 + v2
,

so

x =
u2 + v2 − 1

u2 + v2 + 2u+ 1
, y =

2v

u2 + v2 + 2u+ 1
.

Now we can convert

ds2 =
dx2 + dy2

[1− (x2 + y2)]2

to (after a long calculation)

ds2 =
du2 + dv2

u2
.

The standard convention is to rotate from RHP to UHP, and to rename the variables
as x and y :

ds2 =
dx2 + dy2

y2
.

In this new representation (related to the old one somewhat as a Mercator map
is related to a polar one), the geodesics are the semicircles with ends orthogonal
to the horizontal axis, including the vertical lines as a special case. [See Borthwick
slides 6, 11, 3.]

The metric (arc length formula) for the Poincaré half plane is algebraically
simpler than the one for the Poincaré disk, and its circular “lines” are easier to
think about because they are all semicircles.

In this model it is relatively easy to verify that the hyperbolic lines are geodesics
— that is, they are stationary points (in fact, local minima) of the arc length with
respect to small, local variations.

First let’s write down the equations of these lines in analytical geometry. The
generic kind is a [semi]circle with center x = c on the horizontal axis and radius a :

(x− c)2 + y2 = a2.

The vertical lines are a special case: x = constant. To get these as limits of the
semicircles, rewrite the latter as

x2 − 2cx+ y2 = (a+ c)(a− c),

divide by a+ c, and take c and a to infinity with c− a fixed.
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Now return to the arc length, and suppose that the curve is parametrized by
giving x as a function of y:

s =

∫

ds =

∫

1

y

√

(

dx

dy

)2

+ 1 dy.

(The integral need not be taken over the entire curve, just over a segment that
contains the entire interval where the small variation takes place. There is a slight
gap in our logic at the top of each circle, where the curve has a horizontal tangent,
but that can be taken care of.)

Suppose we replace x(y) by x(y) + δx(y), where δx(y) = 0 outside a small
interval and |δx(y)| is always very small. How does s change? Well, ẋ ≡ dx

dy
changes

to ẋ+ δẋ = ẋ+ d[δx]/dy. And so the first-order change in
√
ẋ2 + 1 is

d

dẋ

√

ẋ2 + 1 δẋ =
ẋ√

ẋ2 + 1

dδx

dy
.

So to first order, the change in s is

δs =

∫

1

y

ẋ√
ẋ2 + 1

dδx

dy
dy.

[What we have done here is an infinite-dimensional generalization of the third-
semester calculus formula

dF =
∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂z
dz =

3
∑

j=1

∂F

∂xj

dxj .

The analogy is j 7→ y, xj 7→ x(y), sum 7→ integral.]

Now the integral can be evaluated by parts; there is no contribution from the
endpoints because we assumed that the variation is confined to an interval interior
to the integral of integration.

δs = −
∫

d

dy

[

1

y

ẋ√
ẋ2 + 1

]

δx(y) dy.

But δx is arbitrary; if this quantity is to be 0 for all variations, then the derivative
in the integrand must be identically zero. Thus the function equals a constant:

1

y

ẋ√
ẋ2 + 1

=
1

a
[or 0].

With a few steps of algebra you can solve this equation for ẋ :

ẋ = ± y
√

a2 − y2
.
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Integrate to get

x = ∓
√

a2 − y2 + c,

or (x − c)2 + y2 = a2, as predicted. If the first constant of integration was 0, the
equation for ẋ was

ẋ√
ẋ2 + 1

= 0,

which is satisfied by (precisely) the vertical lines, x = c.

The same kind of argument works for the geodesics in the Poincaré disk model,
but the algebra is harder. See E. G. Zahar, Stud. Hist. Phil. Mod. Phys. 28 (1997)
183–218.

Local curvature and the pseudosphere model

Geometry Curvature Triangle sum Circumference

Euclidean zero (flat) π (no defect) 2πR

Ellip./sph. positive > π (neg. def.) < 2πR

Hyperbolic negative < π (pos. def.) > 2πR

[sketches]

Explanation of the circumference column: In this discussion R is the radius
of a circle, and K (formerly R) will be the “radius” or characteristic length of the
whole space. In the case of the Euclidean metric, K is an arbitrary scale factor
introduced to maximize the connection with the curved cases. Now we do some
trivial calculations:

Euclidean circles: ds2 = K2(dx2 + dy2) = K2(dr2 + r2dθ2).
Distance from O to r is

∫ r

0
K dr̃ = Kr ≡ R.

Circumference at r is
∫ 2π

0
Kr dθ = 2πKr.

Ratio of circ. to radius is 2π (independent of K and of R !).

Spherical circles: ds2 = K2(dr2 + sin2 r dθ2).
Radius from O to r is

∫ r

0
K dr̃ = Kr ≡ R.

Circumference at r is
∫ 2π

0
K sin r dθ = 2πK sin r.

Ratio is 2π
K sin r

Kr
= 2π

sin(R/K)

R/K
< 2π.
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Hyperboloidal circles: ds2 = K2(dr2 + sinh2 r dθ2).
Radius from O to r is

∫ r

0
K dr̃ = Kr ≡ R.

Circ. at r is
∫ 2π

0
K sinh r dθ = 2πK sinh r.

Ratio is 2π
K sinh r

Kr
= 2π

sinh(R/K)

R/K
> 2π.

Moreover, the ratios increasingly deviate from the flat one as R/K grows, whereas
the flat limit is approached as R/K becomes small. The curvature is defined so
that it turns out to be [proportional to] 1/K2. (More details in a moment.)

By considering small circles we can define the curvature at each point of a
two-dimensional space. (That is, given R we can find K from the formulas above.
For a general space, K might differ from point to point.) In more detail, if r ≡ R/K
is small we can approximate

sin r ≈ r − 1

6
r3, sinh r ≈ r +

1

6
r3,

and pick off K from the third-order term.

Similarly, one can find the curvature from looking at the defects of small tri-
angles. I omit details.

Now consider a surface embedded in three-dimensional Euclidean space, with
the distance function induced by the 3D geometry (i.e., distances measured by
a tape measure along the shortest path on the surface). It has at each point a
curvature defined as we just discussed; this number is called its intrinsic curvature.
The curvature is determined by how the surface is embedded into 3-space, but not
conversely ; for instance, a cylinder is flat, as far as small circles and triangles are
concerned, although it has an extrinsic curvature that describes how it is rolled
up. For more detail see the end of Appendix A, or Part I of Differential Geometry

and Relativity Theory by R. L. Faber, or Elementary Differential Geometry by
Barrett O’Neill. Briefly, the extrinsic curvature is characterized by two numbers
associated with the curvatures (in fact, reciprocals of the “radii of curvature”) of
two orthogonal curves through the point; the intrinsic curvature is their product.
(These numbers are the eigenvalues of a particular 2 × 2 matrix associated with
the point, and the intrinsic curvature is its determinant.) For the cylinder one of
these principal curvatures is 0, so the intrinsic curvature is, too. For a sphere the
principal curvatures are equal (to 1/K), so the intrinsic curvature is positive; but
the same product could arise from unequal curvatures of the same sign (think of a
football).

Now the big point: Are there surfaces of constant, negative curvature embedded
in Euclidean R3 ? Yes, as mentioned on pp. 295–296, Beltrami’s pseudosphere is
a trumpet-shaped surface obtained by revolving a curve called a tractrix about its
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axis. (The equation of the tractrix is

y = a ln
a+

√
a2 − x2

x
−

√

a2 − x2 .

See the Wikipedia article “Tractrix” for details.) Notice that the two dimensions
of the trumpet “curve in opposite directions”, so the principal curvatures are of
opposite sign. As you go up the tube of the trumpet, one of the principal curvatures
shrinks but the other one grows in an exactly compensating manner, so that the
intrinsic curvature stays constant.

The pseudosphere locally models hyperbolic geometry in the same way that
the cylinder locally models Euclidean geometry. Even when “unrolled”, it does not
cover the whole hyperbolic space. See Greenberg, Figs. 10.11 and 10.12, pp. 483–487
(in Chapter 10).

It is important to understand the differences between the pseudosphere model
and the hyperboloid model. The hyperboloid corresponds to the entire hyperbolic
space constructed axiomatically by Bolyai, Lobachevsky, Gauss, Beltrami, Klein,
Poincaré, and Hilbert. But it is embedded in the 3-dimensional space-time with
indefinite metric, so lengths, angles, and curvature upon it are not accurate when
looked at in 3-dimensional Euclidean terms. The pseudosphere model is merely
local: it represents only a fragment of the hyperbolic space (but a completely rep-
resentative one, since all points are geometrically equivalent). But its ambient
3-dimensional space is Euclidean, so a piece of sheet metal, say, in the shape of a
pseudosphere does have exactly the local geometry of a hyperbolic space.

Models that are locally Euclidean, etc.

From the standpoint of differential geometry there are many spaces that locally
have the structure of Euclidean, hyperbolic, or spherical geometry but have different
global structure. These do not obey the Hilbert axioms, but they have constant
curvature and (unlike the Beltrami pseudosphere, or a patch in the plane) they do
not end in gratuitous boundaries. Typically they are constructed by “identifying
points”. Thus in the Euclidean case we have cylinders and tori — and also more
exotic (nonorientable) things, such as Möbius strips and Klein bottles. In the
elliptic case, recall that projective geometry (or “elliptic geometry” in the strict
sense of the term) arises from spherical geometry by identifying antipodal points.
One can continue to more complicated things called lens spaces. The analogs of tori
in hyperbolic space are even more numerous and are still the subject of research.
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Axiomatization of elliptic geometry

From the point of view of Riemannian manifolds of constant curvature, the
sphere is just as valid as the hyperboloid (in fact, more elementary and visualizable).
Our axiomatic development excluded spherical/elliptic geometry at a surprisingly
early stage. Recall that the AIA theorem is inconsistent with “elliptical parallelism”
and an examination of its proof revealed that it depended on Axioms I-1 and B-4.
Spherical geometry violates I-1, and its cured version, elliptic geometry, violates
B-4. Both versions violate B-3, as well.

In Appendix A Greenberg states separation axioms to replace the betweenness
axioms that become untenable in elliptic geometry. He does not make clear whether
these axioms can also be used to formulate Euclidean and hyperbolic geometry,
thereby creating a unified treatment. (I don’t think so.)

He states that the congruence and continuity axioms “all make sense when
rephrased,” but this is far from clear for continuity. Aristotle’s axiom is blatantly
inconsistent with elliptic geometry. (Its proof from the more powerful continuity
axioms requires the Hilbertian betweenness concept – see pp. 135–136.) Dedekind’s
axiom as stated in the book (p. 134) does not carry over without repair. One has to
say that a segment (defined on p. 543) has the topological structure of an interval
of the real line, and the details would require defining a ray — or some replacement
for that concept — without using betweenness. Better references would have been
appreciated.

A good thing in this appendix is the demonstration on pp. 546–547 of why the
(negative) angle defect of a spherical triangle is proportional to the area.
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