Math. 467 (Fulling)

2 October 2020

Midterm Test – Solutions

Upload your answers, in order, as a single document.

- 1. (Multiple choice each 5 pts.) (Indicate the correct capital letter.)
 - (a) The Greek approach to geometry was revolutionary because
 - (A) they insisted upon proofs.
 - (B) they were not interested primarily in practical applications.
 - (C) they focused upon idealizations such as infinitely thin and infinitely straight lines.
 - (D) they discovered the Pythagorean theorem and divided a circle into 360 degrees.
 - (E) [all of these except (D)]
- Ε (D was known to the Babylonians.)
 - (b) Which of the following is *not* provable from the Hilbert I and B axioms?
 - (A) Every point D in the interior of \angle CAB lies on a segment joining a point E on AB to a point F on \overrightarrow{AC} . (B) If \overrightarrow{AD} is between \overrightarrow{AC} and \overrightarrow{AB} , then \overrightarrow{AD} intersects segment BC.

 - (C) If D lies on line \overrightarrow{BC} , then D is in the interior of $\angle CAB$ if B * D * C.
 - (D) If D lies on line \dot{BC} , then B * D * C if D is in the interior of $\angle CAB$.
 - (E) If A is on line l and B is not on l, then every point of \overrightarrow{AB} except A is on the same side of l as B.

("Warning", p. 115.) А

- (c) The importance of the concept of "betweenness" was established by
 - (A) Euclid.
 - (B) Playfair.
 - (C) Pappus.
 - (D) Pasch.
 - (E) Proclus.
- D
- 2. (18 pts.) State the three Hilbert congruence axioms that involve angles. (These are the last three.)

[See pp. 120–121.]

3. (12 pts.) Simplify
$$\neg \exists x \,\forall y \, \left[\left(x \ge 0 \land x \le y \right) \Rightarrow \forall n \left(T(y,n) \lor \neg S(x,n) \right) \right]$$
.
(Push the "¬" in as far as you can!) (In Greenberg's notation, \neg is \sim , and \land is &.)
 $\forall x \exists y \left[\left(x \ge 0 \land x \le y \right) \Rightarrow \forall n \left(T(y,n) \lor \neg S(x,n) \right) \right]$
 $\forall x \exists y \left[\left(x \ge 0 \land x \le y \right) \land \neg \forall n \left(T(y,n) \lor \neg S(x,n) \right) \right]$
 $\forall x \exists y \left[\left(x \ge 0 \land x \le y \right) \land \exists n \neg \left(T(y,n) \lor \neg S(x,n) \right) \right]$
 $\forall x \exists y \left[\left(x \ge 0 \land x \le y \right) \land \exists n \neg \left(T(y,n) \lor \neg S(x,n) \right) \right]$

4. (15 pts.) State Pasch's theorem and draw a sketch to illustrate it. [See p. 114.]

- 5. (20 pts.) Do **ONE** of these [(A) or (B)]. (Extra credit for doing both is limited to 10 points.)
 - (A) Prove Proposition 3.12: If AC \cong DF, then for any point B between A and C, there is a unique point E between D and F such that AB \cong DE.

[See p. 124.]

(B) State and prove the crossbar theorem. For this purpose you can make use of (**DON'T** reprove) Proposition 3.8: If D is in the interior of $\angle CAB$, then (a) so is every other point on ray \overrightarrow{AD} except A; (b) no point on the opposite ray to \overrightarrow{AD} is in the interior of $\angle CAB$; (c) if C * A * E, then B is in the interior of $\angle DAE$.

[See p. 116.]

6. (Essay – 20 pts.) IMPROVEMENTS IN THE REWRITE GET ONLY HALF CREDIT. E.G., IF YOUR INITIAL SCORE IS 16, YOUR FINAL SCORE WON'T EXCEED 18.

Explain what the *Euclidean parallelism property* is, and what it means to say that the Euclidean parallel postulate is *independent* of other axioms. Stress the importance of *models*, and illustrate these ideas in the context of finite incidence geometries (sets of finitely many points and lines that satisfy the three "I" axioms).