ter of the circumand D' the point bisector of $\angle OBC$,

(≮ACD')° so that

vo angles subtend en by the exterior , so if E were also in 180°; similarly, ild add up to more

SAA), so EA \cong FA se EF of an isoscedicular bisector of DFC (hypotenuse-across DA, then e of E, F is inside nee G is the mid-GF \perp DA so that

2

from Instructor's Manual for Euclidean and Non-Euclidean Geometries, 4th ed., by
M. J. Greenberg

I inadvertently omitted review exercises for Chapter 2 from the fourth edition. Here are some if you wish to offer them to your students:

- (1) To "disprove" a statement means to prove the negation of that statement.
- (2) There is no way to program a computer to prove or disprove every statement in mathematics.

- (3) A "model" of an axiom system is the same as an "interpretation" of the system.
- (4) The negation of the statement "If 3 is an odd number then 9 is even" is the statement "If 3 is an odd number then 9 is odd."
- (5) The negation of a conjunction is a disjunction.
- (6) The statement "Base angles of an isosceles triangle are congruent" has no hidden quantifiers.
- (7) The negation of the statement "All triangles are isosceles" is "No triangles are isosceles."
- (8) The converse of the statement "If you push me then I will fall" is the statement "If you push me then I won't fall."
- (9) Whenever a conditional statement is valid, its converse is also valid.
- (10) The statement "Every point has at least two lines passing through it" is independent of the axioms for incidence geometry.
- (11) The statement "If $l \parallel m$ and $m \parallel n$, then $l \parallel n$ " is independent of the axioms for incidence geometry.
- (12) Incidence geometry is consistent.
- (13) Whenever a statement in plane projective geometry is a theorem, so is its dual.
- (14) All four-point models of incidence geometry are isomorphic to one another.