Group Eta Tara Obeid, Perla Perez, Gessner Soto, Cody Ward, Jin

Proposition 3.1 (ii) $\overrightarrow{AB} \cup \overrightarrow{BA} = \left\{ \overleftarrow{AB} \right\}$

Proof. We want to prove that $\overrightarrow{AB} \cup \overrightarrow{BA} = \left\{ \overleftarrow{AB} \right\}$.

Case 1: Show $\overrightarrow{AB} \cup \overrightarrow{BA} \subset \left\{ \overleftarrow{AB} \right\}$. We know by definition of a ray that $\overrightarrow{AB} \subset \left\{ \overleftarrow{AB} \right\}$, and $\overrightarrow{BA} \subset \left\{ \overleftarrow{AB} \right\}$, and therefore, $\overrightarrow{AB} \cup \overrightarrow{BA} \cup \left\{ \overleftarrow{AB} \right\}$.

Case 2: We want to show that $\overrightarrow{AB} \in \overrightarrow{AB} \cup \overrightarrow{AB}$

i Let $P \subset \overleftrightarrow{AB}$, and let P be the endpoints, so P = A and P = B. Then $P \subset \overrightarrow{AB}$ and $P \subset \overrightarrow{BA}$ by definition of a ray, so $P \subset \overrightarrow{AB} \cup \overrightarrow{BA}$.

ii Let A * P * B, so P is between A and B. By B-1, $P \cup \overrightarrow{AB}$.

iii If P * A * B, then $P \in \overrightarrow{BA}$ by the definition of a ray.

iv If $P * B * A, P \in \overrightarrow{AB}$ by the definition of a ray.