Group Eta

Tara Obeid, Perla Perez, Gessner Soto, Cody Ward, Jin
Proposition 3.1 (ii) $\overrightarrow{A B} \cup \overrightarrow{B A}=\{\overleftrightarrow{A B}\}$
Proof. We want to prove that $\overrightarrow{A B} \cup \overrightarrow{B A}=\{\overleftrightarrow{A B}\}$.
Case 1: Show $\overrightarrow{A B} \cup \overrightarrow{B A} \subset\{\overleftrightarrow{A B}\}$. We know by definition of a ray that $\overrightarrow{A B} \subset$ $\{\overleftrightarrow{A B}\}$, and $\overrightarrow{B A} \subset\{\overleftrightarrow{A B}\}$, and therefore, $\overrightarrow{A B} \cup \overrightarrow{B A} \cup\{\overleftrightarrow{A B}\}$.

Case 2: We want to show that $\overrightarrow{A B} \in \overrightarrow{A B} \cup \overrightarrow{A B}$
i Let $P \subset \overleftrightarrow{A B}$, and let P be the endpoints, so $P=A$ and $P=B$. Then $P \subset \overrightarrow{A B}$ and $P \subset \overrightarrow{B A}$ by definition of a ray, so $P \subset \overrightarrow{A B} \cup \overrightarrow{B A}$.
ii Let $A * P * B$, so P is between A and B. By B-1, $P \cup \overrightarrow{A B}$.
iii If $P * A * B$, then $P \in \overrightarrow{B A}$ by the definition of a ray.
iv If $P * B * A, P \in \overrightarrow{A B}$ by the definition of a ray.

