Team Beta Texas A&M University - Math 467 Instructor: Stephen Fulling

Proposition 4.5

To Show: In $\triangle ABC$, AB > BC iff $\angle BCA > \angle CAB$.

Proof. (\Rightarrow): Suppose AB > BC. Pick D with A * D * B and $BD \cong BC$. Since B is the unique point of intersection of \overrightarrow{AB} and \overrightarrow{BC} , D is not incident to \overrightarrow{BC} . Hence, BDC is a triangle. Similarly, ADC is a triangle.

Since $BD \cong BC$, $\triangle BDC$ is isosceles with $\angle BDC \cong \angle BCD$. By the exterior angle theorem applied to $(\triangle ADC, \angle BDC)$, we get $\angle CAB < \angle BDC$. Since A * D * B, we have $\angle BCD < \angle BCA$ by the definition of angle ordering. Putting it all together, $\angle CAB < \angle BCD \cong \angle BCD < \angle BCA$.

(⇐): Suppose $\neg(AB > BC)$. Then either AB = BC or AB < BC. In the former case, $\triangle ABC$ is isosceles with $\angle BCA = \angle CAB$. In the latter case, apply (⇒) to $\triangle CBA$ to get $\angle A > \angle C$.