Team Beta
Texas A\&M University - Math 467
Instructor: Stephen Fulling

Proposition 4.5

To Show: In $\triangle A B C, A B>B C$ iff $\angle B C A>\angle C A B$.
Proof. (\Rightarrow) : Suppose $A B>B C$. Pick D with $A * D * B$ and $B D \cong B C$. Since B is the unique point of intersection of $\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}, D$ is not incident to $\overleftrightarrow{B C}$. Hence, $B D C$ is a triangle. Similarly, $A D C$ is a triangle.

Since $B D \cong B C, \triangle B D C$ is isosceles with $\angle B D C \cong \angle B C D$. By the exterior angle theorem applied to ($\triangle A D C, \angle B D C$), we get $\angle C A B<\angle B D C$. Since $A * D * B$, we have $\angle B C D<\angle B C A$ by the definition of angle ordering. Putting it all together, $\angle C A B<\angle B C D \cong \angle B C D<\angle B C A$.
(\Leftarrow) : Suppose $\neg(A B>B C)$. Then either $A B=B C$ or $A B<B C$. In the former case, $\triangle A B C$ is isosceles with $\angle B C A=\angle C A B$. In the latter case, apply (\Rightarrow) to $\triangle C B A$ to get $\angle A>\angle C$.

