
Math. 489GR (Fulling) 17 November 2005

Test B – Solutions

1. (40 pts.) Consider these two 2-dimensional line elements:

ds2 = −dt2 + cosh2 t dx2,(I)

ds2 = − cosh2 t dt2 + dx2.(II)

(a) Find the geodesic equation for case (I).
The easiest method is to write down the Lagrangian

L =
1

2
gαβ

dxα

ds

dxβ

ds
= − 1

2

(
dt

ds

)2

+
1

2
cosh2 t

(
dx

ds

)2

.

The the Lagrange equations are

0 =
d

ds

∂L

∂ṫ
− ∂L

∂t
= − d2t

ds2
− cosh t sinh t

(
dx

ds

)2

,

0 =
d

ds

∂L

∂ẋ
− ∂L

∂x
=

d

ds
cosh2 t

dx

ds
− 0 = cosh2 t

d2x

ds2
+ 2 cosh t sinh t

dt

dx

dx

ds
.

These can be simplified to

0 =
d2t

ds2
+ cosh t sinh t

(
dx

ds

)2

,

0 =
d2x

ds2
+ 2 tanh t

dt

dx

dx

ds
.

(b) A space-time manifold M has the metric tensor given by (I), with the coordinate
ranges −∞ < t < ∞ , 0 ≤ x < 2π . (This is the two-dimensional de Sitter space.)
Tell how to integrate a scalar function over M covariantly. (I.e., what is the correct
“volume element” or “geometric weight factor” for these coordinates?)

The determinant of the metric tensor is

∣∣∣∣−1 0

0 cosh2 t

∣∣∣∣ = − cosh2 t.

So the integral of f over M is

∫
M

f
√
|g| d2x =

∫ ∞

−∞
dt

∫ 2π

0

dx f(t, x) cosh t .
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(c) Prove that the geometry in case (II) is actually flat. (This is very easy! If you embark
on a big calculation, you are missing the point.)

Introduce a new time coordinate τ = sinh t . Then dτ = cosh t dt , so ds2 = −dτ2 + dx2 and the
space is revealed to be (at least locally) two-dimensional Minkowski space. (“At least locally” means
that it might be just a subset of Minkowski space, or perhaps a cylinder with x a periodic coordinate.
These still qualify as “flat”.)

2. (40 pts.) Consider a metric gµν = ηµν + hµν , where h is small. We will do calculations
to first order in h .

(a) Show that gµν = ηµν − hµν to first order, but not exactly (i.e., that gµν = ηµν −
hµν + O(h2) in general).

Abstract argument: For any small (i.e., sufficiently close to the zero matrix) square matrix A ,

(I + A)−1 = I − A + A2 − A3 + · · · = I − A + O(A2).

Here I is the identity (unit) matrix. But we need to replace I by η = diag(−1, 1, 1, 1) . Write

η + h = η(I + η−1h) so that

(η + h)−1 = (I + η−1h)−1η−1 = (I − η−1h + O(h2))η−1 = η−1 − η−1hη−1 + O(h2).

Since η−1 is just η with the indices up, this is what we want to prove.

Concrete argument: Write out

(ηµρ + hµρ)(ηρν − hρν) = δν
µ + hµ

ν − hµ
ν − hµρhρν = δν

µ + O(h2).

So the formula for the inverse is almost right but not quite. To kill off the O(h2) term in the last

equation we could add a certain O(h2) term to the formula for gρν , and so on. (To make the
conclusion rigorous: The difference between the true inverse and the approximation, when multiplied
by η+h , is of order O(h2) . Since η+h is nonsingular (for “small” h ), it follows that the difference

(error) is itself of order O(h2) .)

(b) Calculate the Christoffel symbols to first order in h .
Let us use the formula

Γ
µ
αβ =

1

2
gµγ

(
gγβ,α + gαγ,β − gαβ,γ

)
.

(Using the geodesic Lagrangian does not help much in this case (but it works).) The derivatives are
already first-order in h . Therefore, we can throw away the h term in gµγ , because it will make
only second-order contributions. Thus

Γ
µ
αβ =

1

2
ηµγ

(
hγβ,α + hαγ,β − hαβ,γ

)
.
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(c) Knowing that
Rα

βµν = Γα
βν,µ − Γα

βµ,ν + Γα
σµΓσ

βν − Γα
σνΓσ

βµ ,

calculate Rα
βµν to first order in h . (The answer has four terms, two with plus signs

and two with minus signs.)
Since Γ = O(h) , the ΓΓ terms are O(h2) and can be ignored. Thus

Rα
βµν =

1

2
ηαγ(hγν,βµ + hβγ,νµ − hβν,γµ) − 1

2
ηαγ(hγµ,βν + hβγ,µν − hβµ,γν)

=
1

2
ηαγ(hγν,βµ − hγµ,βν − hβν,γµ + hβµ,γν).

This agrees with Schutz (8.25).

3. (45 pts.) In Euclidean R2 introduce parabolic coordinates (u, v) by

x = 1
2 (u2 − v2), y = uv.

Note that the tangent vectors to the coordinate curves,

~eu =
∂r
∂u

=
(

u
v

)
, ~ev =

∂r
∂v

=
(−v

u

)
(where r =

(
x
y

)
)

form a local basis at each point r for the contravariant vectors. (This basis happens to
be orthogonal but not orthonormal.)
(a) Are there any points where the assertion above (“Note that . . . ”) is not true?

At the origin, where u = v = 0 as well as x = y = 0 , the two tangent vectors are both zero and
hence do not form a basis. At any other point the vectors are linearly independent (their determinant

is u2 + v2 6= 0 ) and orthogonal, so the assertion is true. (When u2 + v2 = 1 they are of unit length
and hence the basis is actually orthonormal.)

(b) (essay) Using this coordinate system as an example, explain how covariant derivatives
and Christoffel symbols in a flat space are related to local basis vectors.

In flat space the Cartesian basis vectors are regarded as the same at all points, and so we can
differentiate vector fields simply by differentiating their Cartesian components. When a curvilinear
coordinate system is used, the basis vectors change from point to point, and hence the derivative of
a vector field includes contributions from the derivatives of the basis vectors:

∇µ(vα~eα) = vα
,µ~eα + vα∇µ~eα.

Therefore, in the notation

vβ
;µ = vβ

,µ + Γ
β
αµvα

we can identify

Γ
β
αµ = (∇µ~eα)β

(the β component of the expansion of ∇µ~eα as a linear combination of the curvilinear basis vectors).
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(c) Calculate the Christoffel symbols for the parabolic coordinate system, either by the
method suggested by your essay or by another method. (Of course, if you have time
you will do it by two methods to check your answers and get a bit of extra credit.)

Basis-vector method: We have immediately

~eu,u =

(
1

0

)
, ~eu,v =

(
0

1

)
, ~ev,u =

(
0

1

)
, ~ev,v =

(
−1

0

)
.

Unfortunately, the components of these vectors are with respect to the Cartesian basis, so we need
to express the latter in terms of the parabolic one. From

~eu = u~ex + v~ey , ~ev = −v~ex + u~ey

we find
u~eu − v~ev = (u2 + v2)~ex , v~eu + u~ev = (u2 + v2)~ey ,

hence

~eu,u = ~ex =
u

u2 + v2
~eu − v

u2 + v2
~ev = −~ev,v , ~eu,v = ~ev,u = ~ey =

v

u2 + v2
~eu +

u

u2 + v2
~ev .

Therefore,

Γu
uu =

u

u2 + v2
, Γv

uu =
−v

u2 + v2
, Γu

vv =
−u

u2 + v2
, Γv

vv =
v

u2 + v2
,

Γu
uv = Γu

vu =
v

u2 + v2
, Γv

uv = Γv
vu =

u

u2 + v2
.

Metric methods: First we need to find the metric in these coordinates. One way is to recall that
gαβ = ~eα ·~eβ , so (

guu guv

gvu gvv

)
=

(
u2 + v2 0

0 u2 + v2

)
.

Another is to crank out

ds2 = dx2 + dy2 = (u du − v dv)2 + (v du + u dv)2 = (u2 + v2)(du2 + dv2).

Now we can either use the gamma formula recalled in Qu. 2 or use the geodesic Lagrangian. I will
do the latter:

L = 1
2 (u2 + v2)(u̇2 + v̇2),

so (looking at u first)

0 =
d

ds

∂L

∂u̇
− ∂L

∂u
= ü(u2 + v2) + 2uu̇2 + 2vu̇v̇ − u(u̇2 + v̇2),

or

0 = ü +
u

u2 + v2
(u̇2 − v̇2) +

2v

u2 + v2
u̇v̇.

From this we read off

Γu
uu =

u

u2 + v2
, Γu

vv =
−u

u2 + v2
, Γu

uv =
v

u2 + v2
.

Since L is symmetrical in u and v , it is obvious that the v equations will be exactly like the u
equations except that u and v are interchanged.


