On the Relation between Inversion and Index Swapping

In special relativity, Schutz writes \(\{\Lambda^\beta_\alpha\} \) for the matrix of the coordinate transformation inverse to the coordinate transformation

\[x^{\bar{\alpha}} = \Lambda^\bar{\alpha}_\beta x^\beta. \]

However, one might want to use that same notation for the transpose of the matrix obtained by raising and lowering the indices of the matrix in (*):

\[\Lambda_{\bar{\alpha}}^\beta = g_{\bar{\alpha}\bar{\mu}} \Lambda^{\bar{\mu}}_{\nu} g^{\nu\beta}. \]

Here \(\{g_{\alpha\beta}\} \) and \(\{g_{\bar{\alpha}\bar{\beta}}\} \) are the matrices of the metric of Minkowski space with respect to the unbarred and barred coordinate system, respectively. (The coordinate transformation (*) is linear, but not necessarily a Lorentz transformation.) Let us investigate whether these two interpretations of the symbol \(\Lambda^\beta_\alpha \) are consistent.

If the answer is yes, then (according to the first definition) \(\delta_{\bar{\gamma}}^{\bar{\alpha}} \) must equal

\[
\begin{align*}
\Lambda^{\bar{\alpha}}_\beta \Lambda_{\bar{\gamma}}^\beta &\equiv \Lambda^{\bar{\alpha}}_\beta (g_{\bar{\gamma}\bar{\mu}} \Lambda^{\bar{\mu}}_{\nu} g^{\nu\beta}) \\
&= g_{\bar{\gamma}\bar{\mu}} (\Lambda^{\bar{\mu}}_{\nu} g^{\nu\beta} \Lambda_{\bar{\alpha}}^\beta) \\
&= g_{\bar{\gamma}\bar{\mu}} g^{\mu\bar{\alpha}} \\
&= \delta_{\bar{\gamma}}^{\bar{\alpha}}, \quad \text{Q.E.D.}
\end{align*}
\]

(The first step uses the second definition, and the next-to-last step uses the transformation law of a \((\frac{2}{0})\) tensor.)

In less ambiguous notation, what we have proved is that

\[
(\Lambda^{-1})^{\beta}_{\bar{\alpha}} = g_{\alpha\bar{\mu}} \Lambda^{\bar{\mu}}_{\nu} g^{\nu\beta}. \tag{†}
\]

Note that if \(\Lambda \) is not a Lorentz transformation, then the barred and unbarred \(g \) matrices are not numerically equal; at most one of them in that case has the form

\[
\eta = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

If \(\Lambda \) is Lorentz (so that the \(g \) matrices are the same) and the coordinates are with respect to an orthogonal basis (so that indeed \(g = \eta \)), then (†) is the indefinite-metric counterpart of the “inverse = transpose” characterization of an orthogonal matrix in Euclidean space: The inverse of a Lorentz transformation equals the transpose with the indices raised and lowered (by \(\eta \)). (In the Euclidean case, \(\eta \) is replaced by \(\delta \) and hence (†) reduces to

\[
(\Lambda^{-1})^{\beta}_{\bar{\alpha}} = \Lambda^{\bar{\alpha}}_\beta,
\]
in which the up-down index position has no significance.) For a general linear transformation, \((\dagger)\) may appear to offer a free lunch: How can we calculate an inverse matrix without the hard work of evaluating Cramer’s rule, or performing a Gaussian elimination? The answer is that in the general case at least one of the matrices \(\{g_{\bar{\alpha}\bar{\mu}}\}\) and \(\{g^{\nu\beta}\}\) is nontrivial and somehow contains the information about the inverse matrix.

Alternative argument: We can use the metric to map between vectors and covectors. Since

\[v^{\bar{\alpha}} = \Lambda_{\bar{\alpha}}^{\bar{\beta}} v^{\bar{\beta}} \]

is the transformation law for vectors, that for covectors must be

\[\tilde{v}_{\bar{\mu}} = g_{\bar{\mu}\bar{\alpha}} v^{\bar{\alpha}} \]

\[= g_{\bar{\mu}\bar{\alpha}} \Lambda_{\bar{\alpha}}^{\bar{\beta}} v^{\bar{\beta}} \]

\[= g_{\bar{\mu}\bar{\alpha}} \Lambda_{\bar{\alpha}}^{\bar{\beta}} g^{\bar{\beta}\nu} \tilde{v}_{\nu} \]

\[\equiv \Lambda_{\bar{\mu}}^{\nu} \tilde{v}_{\nu} \]

according to the second definition. But the transformation matrix for covectors is the transpose of the inverse of that for vectors — i.e.,

\[\tilde{v}_{\bar{\mu}} = \Lambda_{\bar{\mu}}^{\nu} \tilde{v}_{\nu} \]

according to the first definition. Therefore, the definitions are consistent.