
Math. 489GR (Fulling) 20 February 2008

Test A – Solutions

Extra Credit: The test is worth 120 points, but 100 counts as a perfect score.

1. (30 pts.)

(a) Sam is moving in the positive x direction at speed v relative to me. Write down the
Lorentz transformation from my coordinate system to Sam’s. (Take c = 1 .)

The transformation has matrix

1√
1 − v2







1 −v 0 0

−v 1 0 0

0 0 0 0

0 0 0 0






+







0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1






.

(I chose to type the version that involves the fewest square roots.)

(b) Karen is moving in the positive x direction at speed u relative to Sam. Suppressing
the irrelevant y and z directions, find the Lorentz transformation from my coordinate
system to Karen’s. (Multiply two 2 × 2 matrices.)

In analogy to (a), the transformation from Sam’s coordinates to Karen’s is 1
√

1−u2

(

1 −u

−u 1

)

. So

to get from my coordinates to Karen’s we need

1√
1 − u2

(

1 −u

−u 1

)

1√
1 − v2

(

1 −v

−v 1

)

=
1√

1 − u2
√

1 − v2

(

1 + uv −u − v

−u − v 1 + uv

)

.

(c) From your answer to (b), deduce the (one-dimensional) relativistic velocity composition
law (the formula for Karen’s speed relative to me).

We need to simplify (b) to the form 1
√

1−w2

(

1 −w

−w 1

)

. The quickest way to do the algebra is to

note that −w must be the ratio of the off-diagonal entries to the diagonal ones:

w ≡ − Λ1
0

Λ0
0

=
u + v

1 + uv
.

This is the well known correct answer. To be completely careful, we now check that the “ γ ” factor
comes out right:

γ−2 ≡ 1 − w2

= 1 − (u + v)2

(1 + uv)2

=
(1 + 2uv + u2v2) − (u2 + 2uv + v2)

(1 + uv)2

=
1 − (u2 + v2) + u2v2

(1 + uv)2

=
(1 − u2)(1 − v2)

(1 + uv)2

= (Λ0
0)

−2 .
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2. (40 pts.) Consider the coordinate transformation

t = bt̄,

x = x̄ − vt̄
( b and v constant)

in a two-dimensional space-time whose metric tensor in the unbarred coordinates is the
usual one,

η =

(

−1 0
0 1

)

.

(Note that this is not a Lorentz transformation. It is a linear transformation, however.)

(a) Calculate the tangent vectors to the coordinate curves, ~et̄ and ~ex̄ (also called ~e0̄ and

~e1̄ , or ∂
∂t̄

and ∂
∂x̄ .)

~et̄ is the tangent vector to the curve
(

t
x

)

regarded as a function of t̄ with x̄ fixed:

~et̄ =

(

b

−v

)

.

By the same reasoning,

~ex̄ =
∂

∂x̄

(

t

x

)

=

(

0

1

)

.

For later use note that these vectors go together to make up the Jacobian matrix of the transformation,

J =

(

b 0

−v 1

)

= Λα
β̄ .

(In the present case J is the same as Λ , the matrix of the coordinate transformation itself, because
the transformation is linear.)

(b) Calculate the normal one-forms to the coordinate “surfaces”, d̃t̄ and d̃x̄ (also called

dx0̄ and dx1̄ , or Ẽ0̄ and Ẽ1̄ . (Check that the reciprocal-basis condition, Ẽµ(~eν) =
δ
µ
ν , is satisfied.)

d̃t̄ =
∂t̄

∂t
d̃t +

∂t̄

∂x
d̃x , etc.

The easiest way to find the coefficients in these equations is to note that they are the rows of the
inverse of J , the matrix whose columns are the tangent vectors. By Cramer’s rule,

J−1 =
1

b

(

1 0

v b

)

=

(

b−1 0

vb−1 1

)

.

d̃t̄ =
1

b
d̃t , d̃x̄ =

v

b
d̃t + d̃x .

In another notation,

Ẽ t̄ = (1/b, 0) , Ẽx̄ = (v/b, 1) ,

and it’s easy to check that these are reciprocal to the tangent-vector basis.
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(c) Take b = 1 and v = 1
2 . At the origin of the (t, x) Cartesian coordinate grid,

sketch the two tangent vectors, ~et̄ and ~ex̄ , and the two normal vectors, E
♯
t̄

and

E
♯
x̄ , related to the normal one-forms via the metric (“index-raising”). (Recall that the

normal vectors may not look normal to the surfaces, but they are normal with respect
to the Lorentz inner product.)

~et̄ =

(

1

− 1

2

)

, ~ex̄ =

(

0

1

)

; E♯

t̄
=

(

−1

0

)

, E♯
x̄ =

(

− 1

2

1

)

.

t
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(d) Calculate the metric tensor in the barred coordinates, gᾱβ̄ .

Method 1: −dt2 + dx2 = −(b dt̄)2 + (dx̄ − v dt̄)2 = (−b2 + v2) dt̄2 + dx̄2 − 2v dx̄ dt̄ . Therefore, the

matrix of g is

(

−b2 + v2 −v

−v 1

)

.

Method 2: gᾱβ̄ = Λᾱ
µΛβ̄

νηµν with an appropriate matrix Λ . Namely, the matrix that maps

covector components from unbarred to barred is the contragredient of the one that maps vector
components from unbarred to barred — that is, the transpose of the one that maps vector components
from barred to unbarred, which is J . In matrix product terms,

g = JtηJ =

(

b −v

0 1

)(

−1 0

0 1

)(

b 0

−v 1

)

=

(

−b2 + v2 −v

−v 1

)

.

Method 3: Evaluate gt̄t̄ = g(~et̄,~et̄) in the unbarred system as η00b2 + η11(−v)2 = −b2 + v2 .
The other three components work out similarly.

3. (50 pts.) Let T be a
(0
2

)

tensor, and let {~eα} be a basis (not necessarily orthonormal)

for the space of contravariant vectors, V (alias
(1
0

)

tensors).

(a) State the modern definition of a
(0
2

)

tensor as a function of some kind acting on inputs
from V . Give the formula for the tensor components Tαβ with respect to the given
basis.

T is a bilinear functional on V . That is, it takes two vectorial arguments and yields a (real) number,
and it depends linearly on each argument when the other is fixed. For example, T (~u + λ~v, ~w) =
T (~u, ~w) + λT (~v, ~w) . We have Tαβ = T (~eα,~eβ) in terms of the basis vectors.
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(b) T is called symmetric if Tβα = Tαβ (for all indices). Explain why this condition is
independent of the basis chosen.

Using the bilinearity it is easy to show that the condition is equivalent to T (~u,~v) = T (~v, ~u) for all
vectors ~u and ~v . This condition makes no reference to a particular coordinate system.

Alternative argument: For some transformation matrix Λ ,

Tµ̄ν̄ = Λµ̄
αΛν̄

βTαβ = Λµ̄
αΛν̄

βTβα = Tν̄µ̄ .

(c) T is called antisymmetric if Tβα = −Tαβ . Prove that every
(0
2

)

tensor is a sum of
a symmetric and an antisymmetric tensor.

Given a T , define (in terms of its transpose, T t )

Ts =
1

2
(T + T t), Ta =

1

2
(T − T t).

Then Ts is symmetric (since taking the transpose just means swapping the index positions), Ta is
antisymmetric, and T = Ts +Ta . (This is the same as the proof that every function is the sum of an
even and an odd function. It is an example of the simplest decomposition of a group representation
into a sum of irreducible representations. Note that nothing but the zero tensor is both symmetric
and antisymmetric, so the decomposition is unique.)

(d) For a
(1
1

)

tensor, show that the component condition Tβ
α = Tα

β is not independent

of basis. (Suggestion: Construct a counterexample assuming that the dimension of V
is 2 .)

For a mixed tensor, the basis transformation law is the familiar similarity transformation of matrices,
T = MTM−1 . Suppose that

M =

(

2 0

0 1

)

, M−1 =

(

1

2
0

0 1

)

.

Now if T is a symmetric but nondiagonal matrix, say T =

(

0 1

1 0

)

, we have

T =

(

2 0

0 1

)(

0 1

1 0

)(

1

2
0

0 1

)

=

(

0 2
1

2
1

)

,

which is not symmetric.

(e) Show that the condition Tβ
α = Tα

β is preserved by Lorentz transformations (for

which (Λ−1)νµ̄ = Λµ̄
ν .)

In analogy to the alternative argument for (b), calculate

T ᾱ
β̄ = Λᾱ

µ(Λ−1)νβ̄Tµ
ν = Λᾱ

µΛβ̄
νTµ

ν = Λᾱ
µΛβ̄

νT ν
µ = Λβ̄

ν(Λ−1)µᾱT ν
µ = T β̄

ᾱ .


