Test A - Solutions

Extra Credit: The test is worth 120 points, but 100 counts as a perfect score.

1. (30 pts.)
(a) Sam is moving in the positive x direction at speed v relative to me. Write down the Lorentz transformation from my coordinate system to Sam's. (Take $c=1$.)
The transformation has matrix

$$
\frac{1}{\sqrt{1-v^{2}}}\left(\begin{array}{cccc}
1 & -v & 0 & 0 \\
-v & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(I chose to type the version that involves the fewest square roots.)
(b) Karen is moving in the positive x direction at speed u relative to Sam. Suppressing the irrelevant y and z directions, find the Lorentz transformation from my coordinate system to Karen's. (Multiply two 2×2 matrices.)
In analogy to (a), the transformation from Sam's coordinates to Karen's is $\frac{1}{\sqrt{1-u^{2}}}\left(\begin{array}{cc}1 & -u \\ -u & 1\end{array}\right)$. So to get from my coordinates to Karen's we need

$$
\frac{1}{\sqrt{1-u^{2}}}\left(\begin{array}{cc}
1 & -u \\
-u & 1
\end{array}\right) \frac{1}{\sqrt{1-v^{2}}}\left(\begin{array}{cc}
1 & -v \\
-v & 1
\end{array}\right)=\frac{1}{\sqrt{1-u^{2}} \sqrt{1-v^{2}}}\left(\begin{array}{cc}
1+u v & -u-v \\
-u-v & 1+u v
\end{array}\right) .
$$

(c) From your answer to (b), deduce the (one-dimensional) relativistic velocity composition law (the formula for Karen's speed relative to me).
We need to simplify (b) to the form $\frac{1}{\sqrt{1-w^{2}}}\left(\begin{array}{cc}1 & -w \\ -w & 1\end{array}\right)$. The quickest way to do the algebra is to note that $-w$ must be the ratio of the off-diagonal entries to the diagonal ones:

$$
w \equiv-\frac{\Lambda_{0}^{1}}{\Lambda_{0}^{0}}=\frac{u+v}{1+u v} .
$$

This is the well known correct answer. To be completely careful, we now check that the " γ " factor comes out right:

$$
\begin{aligned}
\gamma^{-2} & \equiv 1-w^{2} \\
& =1-\frac{(u+v)^{2}}{(1+u v)^{2}} \\
& =\frac{\left(1+2 u v+u^{2} v^{2}\right)-\left(u^{2}+2 u v+v^{2}\right)}{(1+u v)^{2}} \\
& =\frac{1-\left(u^{2}+v^{2}\right)+u^{2} v^{2}}{(1+u v)^{2}} \\
& =\frac{\left(1-u^{2}\right)\left(1-v^{2}\right)}{(1+u v)^{2}} \\
& =\left(\Lambda_{0}^{0}\right)^{-2} .
\end{aligned}
$$

2. (40 pts.) Consider the coordinate transformation

$$
\begin{aligned}
t & =b \bar{t}, \\
x & =\bar{x}-v \bar{t} \quad(b \text { and } v \text { constant })
\end{aligned}
$$

in a two-dimensional space-time whose metric tensor in the unbarred coordinates is the usual one,

$$
\eta=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

(Note that this is not a Lorentz transformation. It is a linear transformation, however.)
(a) Calculate the tangent vectors to the coordinate curves, $\vec{e}_{\bar{t}}$ and $\vec{e}_{\bar{x}}$ (also called $\vec{e}_{\overline{0}}$ and $\vec{e}_{\overline{1}}$, or $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial \bar{x}}$.)
$\vec{e}_{\bar{t}}$ is the tangent vector to the curve $\binom{t}{x}$ regarded as a function of \bar{t} with \bar{x} fixed:

$$
\vec{e}_{\bar{t}}=\binom{b}{-v} .
$$

By the same reasoning,

$$
\vec{e}_{\bar{x}}=\frac{\partial}{\partial \bar{x}}\binom{t}{x}=\binom{0}{1} .
$$

For later use note that these vectors go together to make up the Jacobian matrix of the transformation,

$$
J=\left(\begin{array}{cc}
b & 0 \\
-v & 1
\end{array}\right)=\Lambda_{\bar{\beta}}^{\alpha} .
$$

(In the present case J is the same as Λ, the matrix of the coordinate transformation itself, because the transformation is linear.)
(b) Calculate the normal one-forms to the coordinate "surfaces", $\tilde{d} \bar{t}$ and $\tilde{d} \bar{x}$ (also called $d x^{\overline{0}}$ and $d x^{\overline{1}}$, or $\tilde{E}^{\overline{0}}$ and $\tilde{E}^{\overline{1}}$. (Check that the reciprocal-basis condition, $\tilde{E}^{\mu}\left(\vec{e}_{\nu}\right)=$ δ_{ν}^{μ}, is satisfied.)

$$
\tilde{d} \bar{t}=\frac{\partial \bar{t}}{\partial t} \tilde{d} t+\frac{\partial \bar{t}}{\partial x} \tilde{d} x, \quad \text { etc. }
$$

The easiest way to find the coefficients in these equations is to note that they are the rows of the inverse of J, the matrix whose columns are the tangent vectors. By Cramer's rule,

$$
\begin{gathered}
J^{-1}=\frac{1}{b}\left(\begin{array}{ll}
1 & 0 \\
v & b
\end{array}\right)=\left(\begin{array}{cc}
b^{-1} & 0 \\
v b^{-1} & 1
\end{array}\right) . \\
\tilde{d} \bar{t}=\frac{1}{b} \tilde{d} t, \quad \tilde{d} \bar{x}=\frac{v}{b} \tilde{d} t+\tilde{d} x .
\end{gathered}
$$

In another notation,

$$
\tilde{E}^{\bar{t}}=(1 / b, 0), \quad \tilde{E}^{\bar{x}}=(v / b, 1),
$$

and it's easy to check that these are reciprocal to the tangent-vector basis.
(c) Take $b=1$ and $v=\frac{1}{2}$. At the origin of the (t, x) Cartesian coordinate grid, sketch the two tangent vectors, $\vec{e}_{\bar{t}}$ and $\vec{e}_{\bar{x}}$, and the two normal vectors, $E_{\vec{t}}^{\sharp}$ and $E_{\overline{\bar{x}}}^{\sharp}$, related to the normal one-forms via the metric ("index-raising"). (Recall that the normal vectors may not look normal to the surfaces, but they are normal with respect to the Lorentz inner product.)

$$
\vec{e}_{\bar{t}}=\binom{1}{-\frac{1}{2}}, \quad \vec{e}_{\bar{x}}=\binom{0}{1} ; \quad E_{\bar{t}}^{\sharp}=\binom{-1}{0}, \quad E_{\bar{x}}^{\sharp}=\binom{-\frac{1}{2}}{1} .
$$

(d) Calculate the metric tensor in the barred coordinates, $g_{\bar{\alpha} \bar{\beta}}$.

Method 1: $-d t^{2}+d x^{2}=-(b d \bar{t})^{2}+(d \bar{x}-v d \bar{t})^{2}=\left(-b^{2}+v^{2}\right) d \bar{t}^{2}+d \bar{x}^{2}-2 v d \bar{x} d \bar{t}$. Therefore, the matrix of g is $\left(\begin{array}{cc}-b^{2}+v^{2} & -v \\ -v & 1\end{array}\right)$.

Method 2: $g_{\bar{\alpha} \bar{\beta}}=\Lambda_{\bar{\alpha}}{ }^{\mu} \Lambda_{\bar{\beta}}{ }^{\nu} \eta_{\mu \nu}$ with an appropriate matrix Λ. Namely, the matrix that maps covector components from unbarred to barred is the contragredient of the one that maps vector components from unbarred to barred - that is, the transpose of the one that maps vector components from barred to unbarred, which is J. In matrix product terms,

$$
g=J^{\mathrm{t}} \eta J=\left(\begin{array}{cc}
b & -v \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
b & 0 \\
-v & 1
\end{array}\right)=\left(\begin{array}{cc}
-b^{2}+v^{2} & -v \\
-v & 1
\end{array}\right) .
$$

Method 3: Evaluate $g_{\bar{t} \bar{t}}=g\left(\vec{e}_{\bar{t}}, \vec{e}_{\bar{t}}\right)$ in the unbarred system as $\eta_{00} b^{2}+\eta_{11}(-v)^{2}=-b^{2}+v^{2}$. The other three components work out similarly.
3. (50 pts.) Let T be a $\binom{0}{2}$ tensor, and let $\left\{\vec{e}_{\alpha}\right\}$ be a basis (not necessarily orthonormal) for the space of contravariant vectors, \mathcal{V} (alias $\binom{1}{0}$ tensors).
(a) State the modern definition of a $\binom{0}{2}$ tensor as a function of some kind acting on inputs from \mathcal{V}. Give the formula for the tensor components $T_{\alpha \beta}$ with respect to the given basis.
T is a bilinear functional on \mathcal{V}. That is, it takes two vectorial arguments and yields a (real) number, and it depends linearly on each argument when the other is fixed. For example, $T(\vec{u}+\lambda \vec{v}, \vec{w})=$ $T(\vec{u}, \vec{w})+\lambda T(\vec{v}, \vec{w})$. We have $T_{\alpha \beta}=T\left(\vec{e}_{\alpha}, \vec{e}_{\beta}\right)$ in terms of the basis vectors.
(b) T is called symmetric if $T_{\beta \alpha}=T_{\alpha \beta}$ (for all indices). Explain why this condition is independent of the basis chosen.
Using the bilinearity it is easy to show that the condition is equivalent to $T(\vec{u}, \vec{v})=T(\vec{v}, \vec{u})$ for all vectors \vec{u} and \vec{v}. This condition makes no reference to a particular coordinate system.

Alternative argument: For some transformation matrix Λ,

$$
T_{\bar{\mu} \bar{\nu}}=\Lambda_{\bar{\mu}}{ }^{\alpha} \Lambda_{\bar{\nu}}^{\beta} T_{\alpha \beta}=\Lambda_{\bar{\mu}}^{\alpha} \Lambda_{\bar{\nu}}^{\beta} T_{\beta \alpha}=T_{\bar{\nu} \bar{\mu}} .
$$

(c) T is called antisymmetric if $T_{\beta \alpha}=-T_{\alpha \beta}$. Prove that every $\binom{0}{2}$ tensor is a sum of a symmetric and an antisymmetric tensor.
Given a T, define (in terms of its transpose, T^{t})

$$
T_{\mathrm{s}}=\frac{1}{2}\left(T+T^{\mathrm{t}}\right), \quad T_{\mathrm{a}}=\frac{1}{2}\left(T-T^{\mathrm{t}}\right) .
$$

Then T_{s} is symmetric (since taking the transpose just means swapping the index positions), T_{a} is antisymmetric, and $T=T_{\mathrm{s}}+T_{\mathrm{a}}$. (This is the same as the proof that every function is the sum of an even and an odd function. It is an example of the simplest decomposition of a group representation into a sum of irreducible representations. Note that nothing but the zero tensor is both symmetric and antisymmetric, so the decomposition is unique.)
(d) For a $\binom{1}{1}$ tensor, show that the component condition $T^{\beta}{ }_{\alpha}=T^{\alpha}{ }_{\beta}$ is not independent of basis. (Suggestion: Construct a counterexample assuming that the dimension of \mathcal{V} is 2 .)
For a mixed tensor, the basis transformation law is the familiar similarity transformation of matrices, $\bar{T}=M T M^{-1}$. Suppose that

$$
M=\left(\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right), \quad M^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right) .
$$

Now if T is a symmetric but nondiagonal matrix, say $T=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, we have

$$
\bar{T}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
\frac{1}{2} & 1
\end{array}\right)
$$

which is not symmetric.
(e) Show that the condition $T^{\beta}{ }_{\alpha}=T^{\alpha}{ }_{\beta}$ is preserved by Lorentz transformations (for which $\left.\left(\Lambda^{-1}\right)^{\nu} \bar{\mu}=\Lambda^{\bar{\mu}}{ }_{\nu}.\right)$
In analogy to the alternative argument for (b), calculate

$$
T^{\bar{\alpha}}{ }_{\bar{\beta}}=\Lambda^{\bar{\alpha}}{ }_{\mu}\left(\Lambda^{-1}\right)^{\nu}{ }_{\bar{\beta}} T^{\mu}{ }_{\nu}=\Lambda^{\bar{\alpha}}{ }_{\mu} \Lambda^{\bar{\beta}}{ }_{\nu} T^{\mu}{ }_{\nu}=\Lambda^{\bar{\alpha}}{ }_{\mu} \Lambda^{\bar{\beta}}{ }_{\nu} T^{\nu}{ }_{\mu}=\Lambda^{\bar{\beta}}{ }_{\nu}\left(\Lambda^{-1}\right)^{\mu}{ }_{\bar{\alpha}} T^{\nu}{ }_{\mu}=T^{\bar{\beta}}{ }_{\bar{\alpha}} .
$$

