
Consider z3 + a1z + a0 = 0, where a1 and a0 are real. Let

q =
a1

3
, r = − a0

2
.

Then (according to the handbook)
• If q3 + r2 > 0, there are one real root and a pair of complex conjugate roots,
• If q3 + r2 = 0, all roots are real and at least two are equal,
• If q3 + r2 < 0, all roots are real.

In Bombelli’s case, a1 = −8 and a0 = −3, so

q = − 8
3

, r =
3
2

, q3 + r2 = −1805
108

= −5
3

(
19
6

)2

.

In the trisection case, a1 = −3 and a0 = −1, so

q = −1, r =
1
2

, q3 + r2 = − 3
4

.

In both cases all the roots are real. (Recall that that is when the imaginary numbers in
the formula are the greatest embarrassment.)

The handbook goes on to define s1 and s2 as

3
√

r ±
√

q3 + r2

and list the roots of the cubic as

z1 = s1 + s2 ,

z2 = − 1
2

(s1 + s2) +
i
√

3
2

(s1 − s2),

z3 = − 1
2

(s1 + s2)− i
√

3
2

(s1 − s2),

and lets it go at that. However, since a complex number usually has two different square
roots and three different cube roots, one needs to look at these formulas critically to get all
the right roots and avoid redundancy. In the case when all roots are real (which is all I’ll
discuss) we see that s1

3 and s2
3 form a complex conjugate pair and the ambiguity in the

sign of the square root is simply the freedom to interchange the two. What is less obvious
is that the ambiguity in the choice of the cube roots amounts to permuting the solutions
zj . Let’s come back to that issue later.

In the Cardano–Bombelli problem we see that z1 is equivalent to Cardano’s formula
as Bombelli interpreted it.

For the trisection of 60◦ we have

s1
3 =

1
2

+ i

√
3

2
, s2

3 =
1
2
− i

√
3

2
.
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One may recognize these as negatives of the two nonreal cube roots of unity, hence they
are cube roots of −1. Therefore, s1 and s2 are ninth roots of −1. Constructing the value of
9
√−1 with smallest argument (i.e., closest to a positive real number and in first quadrant),

s1 = cos
2π

9
+ i sin

2π

9
,

is tantamount to trisecting the angle 2π/3 = 60◦. This verifies that we are on the right
track, albeit a circular one! We now get

z1 = 2 cos
2π

9
,

z2,3 = − cos
2π

9
∓
√

3 sin
2π

9
.

The first of these roots is the one that gives the answer to the trisection problem.
Now, what about those other two roots? Suppose we define s1 = a + ib to be any of

the three possible cube roots of the known s1
3 and take s2 = a− ib. Then

z1 = 2a, z2,3 = −a∓
√

3 b.

So far, so good. (Note that all the roots are real and that their sum is 0, which is the
negative of the coefficient of the quadratic term in the cubic equation, as must be the
case.) Now suppose we had chosen one of the other two cube roots,

s1 = (a + ib)e±2πi/3.

Consider the case ± = + and work it out:

s1 = (a + ib)
(

cos
2π

3
+ i sin

2π

3

)
=

(
− a

2
− b

√
3

2

)
+ i

(
− b

2
+

a
√

3
2

)
.

If s2 is the conjugate of this (which you get by rotating the old s2 in the reverse direction),
we see from the formulas for the roots that

z1 = −a− b
√

3 = old z2 ,

z2 = −a + b
√

3 = old z3 ,

z3 = 2a = old z1 .

In this sense the three roots of the cubic do correspond to the three different ways of
defining the cube root in the basic formula.
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