
Reduction of order
(help on p. 337 and Exercise 12.10)

Euler started with the equation

a3d3y = y dx3 (1)

and observed that one solution is ex/a (or any constant multiple thereof, since the equation
is linear and homogeneous). He divided by that solution and guessed that that differential
expression was indeed an exact differential — more precisely, that

e−x/a(a3 d3y − y dx3) = d[e−x/a(A d2y + B dy dx + Cy dx2)] (2)

for some constants A, B, C. If you calculate the differential on the right side of (2) you
get four types of terms, and hence a sufficient condition for (2) to hold is a certain system
of 4 equations in 3 unknowns. Miraculously, the 4 equations are not independent, and the
system has a unique solution. As a result the right side of (2) comes out to be

a d[e−x/aω], where ω = a2 d2y + a dy dx + y dx2. (3)

So far we have not used the assumption that y is a solution of (1). When we do, we
can conclude that d[e−x/aω] = 0. This does not authorize you to conclude immediately
that ω = 0 (which is our goal). All you can say so far is that

a2 d2y + a dy dx + y dx2 = ω = Kex/a (4)

for some constant K. However, you can compute that the known solution ex/a satisfies
(4) for a particular value of K (which I leave you to compute). We are interested in other
solutions, linearly independent of that one. Given any such solution, you can subtract
some multiple of ex/a to get another (nonzero) solution that satisfies (4) with K = 0.
(Here it is crucial that (4) is a linear equation.) So, once Euler found the general solution
of ω = 0, he knew he could get all the solutions of (1) by adding on arbitrary multiples of
ex/a to arbitrary solutions of ω = 0.
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