Exact differential equations
(help on p. 341 and Exercise 12.15)

We are supposed to consider a differential equation in the form
Pdxr+ Qdy =0. (1)
Let’s consider the example
Pdr+ Qdy =eYdr + (ze +1)dy = 0. (2)
We calculate %—5 =eY and % = eY. In particular,
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so by Clairaut’s theorem, there is a function f(z,y) such that
Pdx + Qdy = df. (4)

A differential equation for which this happy accident occurs is called exact.

[REMARK: Clairaut’s theorem is valid only if P(z,y) and Q(z,y) are given (and
nonsingular) throughout a “simply connected” region in the plane. The canonical coun-
terexample is
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except at the origin, but 6, if it exists, must increase by 27 along any path encircling the
origin counterclockwise — thus must be discontinuous along some curve joining the origin
to infinity, contradicting the hypothesis (4) that it has P and @ as partial derivatives
everywhere except the origin. Indeed, if one defines plane polar coordinates by

xr=rcosf, y=rsinb,
it is easy to see that “locally”,

6 = tan~! Yy + constant,
x

which has those partial derivatives, but there is no way to choose the constant so that 6
is continuously defined “globally”: there must be a jump by 27 somewhere. In modern
terminology, a differential expression P dx + @ dy satisfying (3) is called “closed”, whereas

one satisfying (4) is called “exact”. Exact implies closed, but closed implies exact only
locally.|



Now we proceed to find f in the case (2), where putatively
df = eYdzx + (ze? +1)dy = 0.
Integrating with respect to x with y fixed, we get

f(z,y) = xe’ +r(y), (5)

where r for the moment is an unknown function. [Note that in this calculation, unlike
everywhere else in the discussion of ordinary differential equations, we must think of z and
y as independent variables, not related (at the moment) by being coordinates of points on
a particular curve that solves the differential equation.] Differentiate (5) with respect to y:

of
ze +1=0Q = = =ze¥ +1'(y).
Hl=Q=7 +7'(y)
(Presumably what Katz means by “an ordinary differential equation in one variable” is
the resulting condition ' = 1.) Tt follows that r(y) = y + constant, and hence

fla,y) = we’ +y

is a function satisfying (4).

Why do we care? Well, what this calculation shows is that if we have a curve satisfying
(2), or more generally (1), then f(x,y) does not change as we move along that curve. That
is, the curve is a locus

f(ill',y) =K (6)

for some arbitrary but fixed constant K. (In modern language, we would need an initial
condition to determine K.) In our example, ze¥ + y = K; unfortunately, there is no
solution for y in terms of elementary functions of z in this case. Remember, however, that
for Clairaut and his predecessors, the main interest was in the curve, not the formula for ¥,
and they would probably have been satisfied with (6) as a specification of the locus.

What happens if the happy accident does not occur? Indeed, a modern student would
probably write (2) as
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and be stumped. If you are lucky, you may find a function I(z, y) such that your differential
expression becomes an exact differential after you multiply it by I. In case (7) we know
that I = xe¥ + 1 will work (because I constructed the problem that way). A more useful
example is the general first-order linear equation y’ + Py = @, for which the integrating
factor I = e/ ¥ 4* leads to the solution at the bottom of p. 353 of Katz. It is noteworthy that
I is the reciprocal of a solution of the corresponding homogeneous equation, y’ + Py = 0,
which may be found by elementary means. Euler’s third-order equation, to which we turn
next, provides a much more subtle example of an integrating factor that is the reciprocal
of a previously known solution — in that case, of the equation itself.



