Newton's Divided Difference Interpolation Formula

Source: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun, U.S. Government Priting Office, 1964

They give the formula as

$$
\begin{aligned}
& f(x)=f_{0}+\sum_{k-1}^{n} \pi_{k-1}(x)\left[x_{0}, x_{1}, \ldots, x_{k}\right]+R_{n} \\
& x_{0} \quad f_{0} \\
& {\left[x_{0}, x_{1}\right]} \\
& \begin{array}{lll}
x_{1} & f_{1} & {\left[x_{1}, x_{2}\right]}
\end{array} \begin{array}{l}
{\left[x_{0}, x_{1}, x_{2}\right]} \\
\\
\end{array} \quad\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \\
& x_{2} \quad f_{2} \quad\left[x_{1}, x_{2}, x_{3}\right] \\
& {\left[x_{2}, x_{3}\right]} \\
& x_{3} \quad f_{3} \\
& R_{n}(x)=\pi_{n}(x)\left[x_{0}, \ldots, x_{n}, x\right]=\pi_{n}(x) \frac{f^{(n+1)}(\xi)}{(n+1)!} \quad\left({ }_{0}<\xi<x_{n}\right) .
\end{aligned}
$$

What does all that mean? Well, the function is assumed to be tabulated at points $x_{0}<x_{1}<\cdots$, with $f\left(x_{i}\right)=f_{i}$. Then

$$
\pi_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

is the simplest polynomial that goes exactly through the known points, and the divided differences are

$$
\begin{gathered}
{\left[x_{0}, x_{1}\right]=\frac{f_{0}-f_{1}}{x_{0}-x_{1}}, \quad \text { etc. }} \\
{\left[x_{0}, x_{1}, x_{2}\right]=\frac{\left[x_{0}, x_{1}\right]-\left[x_{1}, x_{2}\right]}{x_{0}-x_{2}}} \\
{\left[x_{0}, x_{1}, \ldots, x_{k}\right]=\frac{\left[x_{0}, \ldots, x_{k-1}\right]-\left[x_{1}, \ldots, x_{k}\right]}{x_{0}-x_{k}}}
\end{gathered}
$$

and so on. The triangular pattern above indicates how these numbers are constructed by repeated subtraction. Finally, R_{n} is the error in the approximation defined by the other terms in the formula.

