d'Alembert's solution of the wave equation

1. Introduce new variables (coordinates) by

$$
u=s-x, \quad v=s+x
$$

Show that the wave equation

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial^{2} y}{\partial s^{2}}
$$

is equivalent to

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial u \partial v}=0 \tag{1}
\end{equation*}
$$

Hint: By the multivariable chain rule, for any function f,

$$
\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x} \frac{\partial f}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial f}{\partial v}
$$

2. Show that the solutions of (1) are the functions of the form

$$
y=\Psi(u)+\Phi(v)
$$

Hint: When is a "constant" of integration not a constant?
3. Substitute the definitions of u and v and declare victory.

