
Lecture for Week 3 (Secs. 2.5 and 2.6)

Infinity and Continuity

(including vertical asymptotes from Sec. 2.2)
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Infinity is not a number. It is a figure

of speech.

Stewart pp. 86–88 and 109 shows graphical
examples of functions with vertical asymptotes,
or, equivalently, infinite limits. The asymptote is
a vertical line which is approached by the graph.
Typically, it appears at a spot where the denom-
inator of the function vanishes (equals 0) but the
numerator is not zero.
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lim
x→a

f(x) = +∞

means that the values of f(x) can be forced to
be arbitrarily large (and positive) by considering
only x sufficiently close to a.

This definition doesn’t allow x to be actually
equal to a. Usually f(a) is not even defined.
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Note that a function like
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has arbitrarily large values near a = 0, but it does
not approach +∞, because it also has small values
arbitrarily close to a. (For instance, it’s 0 when
x = 1

Nπ .)

The limit is −∞ if the function becomes ar-
bitrarily large and negative around the asymp-
tote.
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Often a function will approach +∞ from one
side and −∞ from the other:

Exercise 2.2.18 (p. 90), extended

Discuss the behavior of f(x) =
6

x − 5
around

x = 5.
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As x → 5 from the right, the denominator
becomes very small but remains positive:

lim
x→5+

6

x − 5
= +∞.

As x → 5 from the left, the denominator becomes
very small and negative:

lim
x→5−

6

x − 5
= −∞.

The line x = 5 is a vertical asymptote.
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In Sec. 2.6 we have graphs with horizontal

asymptotes, representing functions with definite
limits at infinity. The asymptote is a horizon-
tal line that the graph approaches at either the
extreme right of the graph, or the extreme left,
or both. Notice (last picture on p. 123) that the
graph does not need to stay on one side of the
asymptote — it can wiggle around it.
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For example,

lim
x→−∞

f(x) = L

means that the values f(x) can be forced to be
arbitrary close to L by considering only values of
x that are sufficiently large and negative. (More
precisely, I should say “negative and sufficiently
large in absolute value.”)
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Exercise 2.6.33 (p. 133)

lim
x→∞

x + 4

x2 − 2x + 5

Exercise 2.6.17

lim
x→∞

(
√

1 + x −
√

x)
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lim
x→∞

x + 4

x2 − 2x + 5

is a rational function (ratio of two polynomials).
The basis trick for finding limits of such things
at infinity is:

Divide numerator and denominator by

the highest power appearing in the denom-

inator.
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x + 4

x2 − 2x + 5
=

1
x + 4

x2

1 − 2
x + 5

x2

.

The point of this maneuver is that now the de-
nominator approaches 1 as x → ∞, so all we
need to do is to take the limit of the numerator,
which is 0 in this case.

lim
x→∞

x + 4

x2 − 2x + 5
= 0.
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It’s easy to see what will happen in all prob-
lems of this type.

1. If the denominator has higher degree than
the numerator, the limit is 0.

2. If the numerator and denominator have the
same degree, the limit is some nonzero num-
ber (the coefficient of the leading term in
the numerator).

3. If the numerator has the higher degree, the
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two limits at infinity are infinite (possibly of
opposite signs). Example:

x3 + 3

x2 − 1
=

x + 3
x2

1 − 1
x2

,

lim
x→+∞

x3 + 3

x2 − 1
= +∞, lim

x→−∞

x3 + 3

x2 − 1
= −∞.

With rational functions we can’t construct
an example for which limx→+∞ and limx→−∞ are
finite and different. But the inverse trig function
tan−1 x has that property (see graph p. 279).
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In a problem like

lim
x→∞

(
√

1 + x −
√

x)

it helps to “rationalize the numerator” by multi-
plying numerator and denominator by the “con-
jugate” expression, in this case

√
1 + x+

√
x. You

get
(1 + x) − x
√

1 + x +
√

x
.

The numerator now goes to 1 while the denomi-
nator goes to infinity, so the limit is 0.
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In both of our exercise examples, the hori-
zontal axis y = 0 was a horizontal asymptote.
Here is an example with a different result:

Exercise 33, extended

Find any asymptotes of y = f(x) = x
x+4 , and

state the corresponding limits involving infinity.
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There is a vertical asymptote at x = −4.

lim
x→−4+

f(x) = −∞, lim
x→−4−

f(x) = +∞.

lim
x→±∞

f(x) = lim
1

1 + 4
x

= 1.

There is a horizontal asymptote at y = 1.
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Now, what is continuity?

The intuitive idea is that a function is con-
tinuous if its graph can be drawn in one stroke,
never lifting the pencil from the paper.
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The practical meaning of continuity for do-
ing calculations is related to something we talked
about last week. Remember that the crucial
practical question about limits is, when do we
know that

lim
x→a

f(x) = f(a) ?

More generally, in evaluating limits we often
wanted to “push the limit through” a function:
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lim
u→b

f(g(u)) = f

(

lim
u→b

g(u)

)

?

If limu→b g(u) exists and equals a, then that ma-
neuver is correct, provided that

lim
x→a

f(x) = f(a). (∗)

If (∗) is true, we say that “f is continuous at a”
— a very convenient property for a function to
have!
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If a function fails to be continuous at a, then
one of three things has happened:

1. f(a) is not defined.

2. lim
x→a

f(x) does not exist.

3. Those two numbers exist but are not equal.

(It is possible for both 1 and 2 to happen at once.)
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The limits that define derivatives, of the
type

lim
x→a

g(x) − g(a)

x − a
,

are the classic example of discontinuous functions
of type 1. They are the main reason for studying
limits at the beginning of calculus.

We have seen various examples of type 2, in-
cluding (a) vertical asymptotes; (b) points where
left and right limits exist but are not equal.
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It is easy to draw graphs of functions of
type 3: take a continuous function and move one
point on it vertically to a strange place. (For in-
stance, see the point (−2,−3) in the graph for
Exercise 2.2.1. Also do Exercise 2.5.17.)

It is harder to find such functions in “real
life”, but here’s an attempt. Suppose you shoot
a gun at a target containing a hole exactly the size
of a bullet. If your aim is perfect, the bullet lands
on the far side. Otherwise, it ricochets off the tar-
get and lands on your side.
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Another way to summarize continuity is that
nearby inputs yield nearby outputs: If x is

close to a, then f(x) is close to f(a).

As it stands, this is rather vague and says
nothing about f(x) for any one particular x. The
precise definition of a limit (and hence of continu-
ity) is a statement about the “collective” behavior
of all points (x, f(x)) for x sufficiently near a.
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Exercise 2.5.23

Explain why h(x) = 5
√

x − 1(x2 − 2) is continuous
on its domain. State the domain.

Remember that common functions (given by
formulas) are continuous at most points. Just look
for points where something strange might be hap-
pening.
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The only problem with the domain might
be that the argument of the root function might
be negative. But that is a problem only for even

roots; 5 is odd. So the domain is the entire real
line.

Polynomials are always continuous, and so
are root functions. So this function is continuous
everywhere. (We’ve used Theorems 5, 6, 8, and 4
(part 4).)
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More examples:

1
√

x − 1
has domain x > 1. It is continuous

there (but not at x = 1, which is a vertical asymp-
tote).

√
x − 1 has domain x ≥ 1. Unlike the first ex-

ample, it is defined when x = 1. It is even continu-
ous there, because (according to the definition and
example on p. 114) the points x < 1 that are out-
side the domain don’t count in deciding whether
the limit exists at a point inside the domain.
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(x + 2)−1/3 is defined and continuous for all
x except −2, which is a vertical asymptote. (This
counts as a “zero in the denominator”, although
the denominator is hidden in the negative expo-
nent.)

cot x also has a hidden denominator. It equals
cos x
sin x , so it is undefined whenever x = Nπ (N an
integer). It is defined and continuous everywhere
else.
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Exercise 2.5.39

Find the values of c and d that make h continu-
ous on R.

h(x) =











2x if x < 1,

cx2 + d if 1 ≤ x ≤ 2,

4x if x > 2.
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Since polynomials are continuous, the only
places of possible discontinuity are the “joints”
at x = 1 and 2. We must insist that the polyno-
mials match there.

2 × 1 = c × 12 + d and c × 22 + d = 4 × 2.

c + d = 2, 4c + d = 8.

c = 2, d = 0

is the only solution.

29


