
Lecture for Week 8 (Secs. 4.1–4.2)

Exponentials and Inverse Functions
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Let’s get right to the point: The main rea-
son for studying exponential functions is to solve
problems like those in Sec. 4.5, where the growth
of some “stuff” is proportional to the amount of
stuff already present:

dP (t)

dt
= kP (t). (∗)

(Compound interest, population growth, radioac-
tive decay all fall into this category.)
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Suppose we knew a function whose deriva-
tive is itself:

d

dx
exp(x) = exp(x).

Then P (t) = C exp(kt) would solve (∗), for any
constant C.

Normalization: We can choose C so that
exp(0) = 1. Then P (t) = P (0) exp(kt) is the
correct solution of (∗) [P ′ = kP ].
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With this, we have solved our first nontrivial
differential equation. The trouble with this ap-
proach to exp(x) is that it may not be obvious
that such a function exists, or that there are not
more than one of them satisfying exp(0) = 1.

Here is a different approach (summarized
from Stewart):

1. From elementary algebra we understand
what ax means, for any a > 1 and any ra-
tional number x.
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2. We can define ax for irrational x by continu-
ity (“filling in the holes in the graph”).

3. Define e as the number such that

lim
h→0

eh − 1

h
= 1.

4. Prove that
d

dx
ex = ex.

5. Observe that a0 = 1 for all a, hence e0 = 1.
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So we can define exp(x) as ex. You can
think of ex either as a number, e, raised to a
power, or as a special function, exp(x), analo-
gous to sin(x) and the other trig functions.
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Algebraic properties of exponentials
(“the laws of exponents”)

ex+y = exey.

(ex)y = exy.

e−x =
1

ex
.

e0 = 1.

e1 = e.
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These laws also hold with a in place of e
everywhere. Also,

(ab)x = axbx.

And we also have ex > 0 and

lim
x→+∞

ex = +∞,

lim
x→−∞

ex = 0.

These also hold for ax if a > 1 ; if 0 < a < 1, the
limits reverse, since ax = (1/a)−x.

8



Exercise 4.1.29

Differentiate y = xe2x.

Exercise 4.1.51

If f(x) = e−2x, find f (8)(x).
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y = xe2x.

Use the product rule, the chain rule, and the ba-
sic exponential derivative formula d

du
eu = eu:

y′ = e2x + x
d

dx
e2x

= e2x + 2xe2x.
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y = e−2x.

What is its 8th derivative? Every time I differen-
tiate, I just get a factor −2. So

f (8)(x) = (−2)8e−2x = 256e−2x.

Exponential and logarithmic functions are in-
verses of each other, so at this point we digress to
discuss inverse functions in general.
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Remember the formula for the volume of a
sphere:

V = 4
3 πr3 ≡ f(r).

Solve it to get a formula for the radius as a func-
tion of the volume:

r =

√

3V

4π
≡ g(v) ≡ f−1(V ).

The functions f and g are inverse to each other.

Note that f−1 does not mean
1

f
in this con-

text.
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In a physical application like that, the vari-
ables have natural names (r and V ), because
they represent physical quantities. But in generic
math, we usually write y = f(x). Should we then
write x = f−1(y) = g(y), or y = f−1(x) = g(x) ?
Both Stewart and Maple insist on the latter,
so that x is always the independent variable
and y the dependent one. To avoid confusion,
I try to use neutral letters, say u = f(w) and
w = f−1(u).
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In obtaining an inverse for a given function,
two complications may arise, the domain prob-

lem and the branch problem. You know that
they both occur for the square root — the in-
verse of a very simple function, u = w2 ≡ f(w).

1. f−1(u) may not be defined for some values
of u. Example: If u < 0, then u is not equal
to w2 for any real w. So the domain of the
square root function contains only nonnega-

tive numbers.
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2. To make f−1 single-valued (as required by
the definition of a function), we may need
to exclude some values of w that satisfy
f(u) = w. We must choose just one w for
each u. This is called “choosing a branch of
the inverse function”. Example: We define√

u to be the nonnegative square root. The
graph of

√
u is the right-hand half of the

graph of w2, flipped over so that the u and
w positive axes are interchanged.
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A condition that assures that the branch
problem does not arise is the horizontal line test

— which says that the graph of the inverse will
pass the vertical line test without our having to
throw part of the graph away. The original func-
tion is then called one-to-one. (We don’t have
two points w mapping into the same u.)

The domain problem does not arise if the
function is onto R — that is, every u ∈ R ap-
pears as f(w) for some w (which will be f−1(u)).
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Exercise 4.2.13

Show that f(x) = 4x + 7 is one-to-one and find
its inverse function.
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We need to solve y = 4x+7. That is elemen-
tary:

x =
1

4
(y − 7) =

y

4
−

7

4
.

(This makes sense for all y, so the function f
is onto. And the solution for x is unique, so f
is one-to-one. Alternatively, you could sketch
the graph of f and see that every horizontal line
crosses it exactly once.)

Therefore, we could write f−1(y) = y

4 − 7
4 ;
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but to match the textbook’s notation we must
switch the variables:

f−1(x) =
x

4
−

7

4
.

Finally we get to the main point: What is
the derivative of f−1(x) ? (We’re assuming we
know the derivative of f .)
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This question could have been answered
back in the section on implicit differentiation.
To say that w = f−1(u) ≡ g(u) is to say that
u = f(w) (and that a branch has been chosen, if
necessary). So

1 =
du

du
= f ′(w)

dw

du
= f ′(w)g′(u).

So

g′(u) = [f ′(w)]−1 =
1

f ′

(

f−1(u)
) .
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Back in our original example, we might want
to write this relation as

dr

dV
=

(

dV

dr

)

−1

.

(Here the exponent −1 does mean to take the
reciprocal (“one over” the number).) Like the
chain rule,

dV

dr
=

dV

dC

dC

dr
,
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the theorem looks trivial in the Leibniz notation.
(But be careful where the functions are evalu-
ated. We need f ′(f−1(u)), not f ′(u).)

Exercise 4.2.31

Suppose g = f−1 and f(4) = 5, f ′(4) = 2
3 . Find

g′(5).
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We want g′(5). Since g is the inverse of f ,
g′ is the reciprocal of f ′. So we look for f ′(5) in
the given information and don’t find it. (Even
worse, it might be given but be irrelevant!)
What is wrong? You have to remember to evalu-
ate f ′ at the number f−1(5), which is 4.

g′(5) =
1

f ′(g(5))
=

1

f ′(4)
=

3

2
.
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Exercise 4.2.25

Find g′(1) if g = f−1 and f(x) = x3 + x + 1.
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f ′(x) = 3x2 + 1.

We need to evaluate at a number x where f(x) =
1. That requires

0 = f(x) − 1 = x3 + x = x(x2 + 1).

Since the quadratic factor has no real roots, only
x = 0 qualifies. (If we did have more than one
root, f−1 would not exist!)

g′(1) =
1

f ′(0)
=

1

1
= 1.
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