
Lecture for Week 10 (Secs. 4.5–8)

Derivative Miscellany III
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Growth and decay problems

I already discussed the theory of these prob-
lems two weeks ago, so let’s just do an example.
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Exercise 4.5.3

A culture starts with 500 bacteria, and after 3
hours there are 8000.

(a) Find the formula for the number after t
hours.

(b) Find the number after 4 hours.

(c) When will the population reach 30,000?
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The basic assumption is that the number
of new bacteria is proportional to the number
already there (parents). So

B(t) = B(0)ekt

for some constant k. So according to the data,

8000 = 500e3k,

or 3k = ln 80
5 = ln 16, or k = 1

3 ln 16.

B(t) = 500e
1
3
t ln 16 = 500(16)t/3.
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Then

B(4) = 500(16)4/3 = (calculator output).

For the last part,

30, 000 = 500(16)t/3 ⇒ t

3
= log16

300

5
⇒ t = 3 log16 60

= 3
ln 60

ln 16
.

5



Inverse trigonometric functions

There are two aspects of inverse trig func-
tions that need to be studied:

• the definitions (especially branch choices);

• their derivatives.

The most important inverse trig functions
are sin−1 and tan−1.
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Both of the problems we encountered for the
square root function also appear for the inverse
sine.

1. sin θ is always between −1 and 1, so there is
no way to define sin−1 z if |z| > 1 (unless we
go into complex numbers, which we won’t).

2. For −1 ≤ z ≤ 1 there is more than one
θ with z as its sine. (In fact, there are in-
finitely many.) So, we have to choose a prin-
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cipal value (or branch) of the inverse func-
tion. The standard choice is to pick θ so
that −π

2 ≤ θ ≤ π
2 .

Please refer to the book for the graphs (p. 276
and p. 278 in this case). Recall that to get the
graph of an inverse function, you can plot the orig-
inal function on a transparent sheet and flip it over
so that the horizontal and vertical axes are inter-
changed.
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Thus sin(sin−1 z) = z always, but
sin−1(sin θ) = θ is false if θ is not in the principal
interval.

Recall also that sin−1 z does not mean

(sin z)−1 (that is, 1/ sin z), although sin2 z does

mean (sin z)2. This notational inconsistency is
unfortunate, but we’re stuck with it. (Let’s not
even ask what sin−2 z means.) Another notation
for the inverse is arcsin z.
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The inverse tangent is easier (see graphs
p. 279), because it is defined for all z and all the
branches look the same (have positive slope).
But there are still infinitely many branches, and
the standard choice is −π

2 < θ < π
2 . (Why is it

“<” here but “≤” for the inverse sine?)

This tan−1 z is a very nice function. It in-
creases smoothly between horizontal asymptotes
at θ = −π

2 and θ = +π
2 .
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The usual technique for differentiating an
implicit or inverse function yields the formulas

d

dx
sin−1 x =

1√
1 − x2

,
d

dx
tan−1 x =

1

1 + x2
.

These are ordinary algebraic functions! (All trace
of trig seems to have disappeared.) One reason
inverse trig functions are important is that they
help provide the antiderivatives of certain alge-
braic functions.
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Exercise 4.6.51

Find the derivative of g(x) = sin−1(3x + 1) and
state the domains of g and g′.

Exercise

Find an antiderivative of

f(x) =
3√

4 − 4x2
− 10

x2 + 1
.
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g(x) = sin−1(3x + 1).

g′(x) =
3

√

1 − (3x + 1)2

(which could be simplified). For g to be defined
we need |3x + 1| ≤ 1.

Case 1: 3x + 1 ≥ 0. Then

3x + 1 ≤ 1 ⇒ x ≤ 0,

3x + 1 ≥ 0 ⇒ x ≥ − 1
3 .
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Case 2: 3x + 1 < 0. Then

−3x − 1 ≤ 1 ⇒ x ≥ − 2
3 ,

3x + 1 < 0 ⇒ x < − 1
3 .

So the domain of g consists of the two intervals

− 1
3 ≤ x ≤ 0 and − 2

3 ≤ x < − 1
3 ,

which fit together to give

− 2
3 ≤ x ≤ 0.
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For g′ to be defined we also need 3x + 1 6= 0,
hence the interval shrinks to − 2

3 < x ≤ 0. (See
the vertical tangents at the ends of the graph,
Fig. 4 on p. 278.)

Alternative solution of the inequality:

|3x + 1| ≤ 1 ⇐⇒
∣

∣x + 1
3

∣

∣ ≤ 1
3 .

This clearly describes the numbers whose dis-
tance from − 1

3 is at most 1
3 — namely, the interval

[

− 2
3 , 0

]

.
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F ′(x) =
3√

4 − 4x2
− 10

x2 + 1
;

what is F?

F ′(x) =
3

2

1√
1 − x2

− 10

x2 + 1
,

so the obvious choice is

F (x) =
3

2
sin−1 x − 10 tan−1 x.
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Soon we will reach the proof that the only other
antiderivatives are equal to this one plus a con-
stant.

(What if the two numbers inside the square
root were not the same? Look forward to the ex-
citement of Chapter 8 in Math. 152!)
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Hyperbolic functions

This topic is not in the syllabus for Math.
151 at TAMU. To see why it should be, read my
paper in College Math. Journal 36 (2005) 381–
387. It also explains why I don’t talk about cot,
csc, sec−1, etc.
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Indeterminate forms (l’Hospital’s rule)

(The name is pronounced “Loap-it-ALL”
(more or less) and sometimes spelled “l’Hôpital”.)

In my opinion, the two most important
things to learn about l’Hospital’s rule are

• when not to use it

• what it teaches us about limits of exp and
ln at infinity.
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Suppose we want to calculate the limit of
f(x)
g(x) as x → a (a may be ∞), and suppose that

both f(x) and g(x) approach 0 in that limit, or
both approach ∞. L’Hospital’s rule states that

that limit is the same as the limit of f ′(x)
g′(x) (which

may be easier to calculate).

Please don’t confuse this formula with the
“limit law” for a quotient, or with the formula for
the derivative of a quotient. They are three differ-
ent things!
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Here is an example of the correct use of the
rule:

lim
x→0

sin(5x)

7x
=

“ 0

0

”

= lim
x→0

5 cos(5x)

7
=

5

7
.

However, you didn’t really need the rule to do
this problem, did you? You already know that
sin(5x) ≈ 5x when x ≈ 0 (or can appeal to
lim
u→0

sin u
u = 1).

21



After studying Taylor series (Chapter 10)
you will know many other situations where the
behavior of the functions f and g near a is obvi-
ous, so l’Hospital is unnecessary. Many students
overuse l’Hospital’s rule, relying on it as a “black
box” when they would learn much more (and
solve the problems equally fast) by just taking a
close look at, and comparing, the behavior of the
numerator and denominator as x → a.

22



Here is an example where using the rule is
absolutely wrong: We know that lim

x→0+

cos x
x =

+∞, because the numerator approaches 1 while
the denominator approaches 0. If you incor-
rectly applied l’Hospital’s rule, you would get
lim

x→0+

− sin x
1 = 0. This fraction did not satisfy the

hypotheses of l’Hospital’s rule, because the limit
of the numerator, cosx, is not 0.
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Finally, consider lim
x→0

(x lnx). This is an in-

determinate form of the type “ 0 ×∞ ”. To apply
l’Hospital’s rule we must rewrite it as a quotient.

First try: lim
x→0+

x

(lnx)−1
is an indeterminate

form of type 0
0 . The rule gives

lim
x→0+

1

− 1/x
(ln x)2

= lim
x→0+

[−x(ln x)2].

This has made the problem worse!
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Second try: lim
x→0+

lnx

1/x
is an indeterminate

form of type ∞
∞ . The rule gives

lim
x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0.

The second method works; the first one
doesn’t.
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In summary,

1. L’Hospital’s rule can give the wrong answer
if the conditions for its validity are not satis-
fied.

2. Sometimes it does not lead to an answer, it
just makes the problem more complicated.

3. Sometimes it works but there is a better way
of solving the problem.
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4. But sometimes it works and is very useful!

When should you use l’Hospital’s rule? By
far the most important situation is when the nu-
merator or denominator does not have an obvi-
ous power-like behavior as x approaches a. This
is the case for the logarithm function as x ap-
proaches either 0 or infinity, and for the expo-
nential function as x approaches either positive
or negative infinity. (That is why the section on
l’Hospital’s rule is in this chapter!)
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In homework you’ll take some limits of ra-
tios of exponentials, logarithms, and ordinary
powers. After awhile the results of such calcu-
lations become very predictable. They can be
summarized in a list of general conclusions:

1. As x → +∞, ex increases faster than any
power, xn.

2. As x → +∞, e−x decreases faster than any
negative power, x−n. (Equivalently: As x →
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−∞, e+x decreases faster than any negative
power.)

3. As x → +∞, ln x, although it goes to infin-
ity, increases more slowly than any positive
power, xa (even a fractional power such as
a = 1

200).

4. As x → 0+, − lnx goes to infinity, but more
slowly than any negative power, x−a (even a
fractional one).
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There are some other famous indeterminate
forms, 00, ∞0, and 0∞. Note that

f(x)g(x) = eg(x) ln f(x).

Therefore, these 3 cases arise when g ln f is an
indeterminate form of the 0 × ∞ type (which
can happen in 3 different ways, depending on
whether the log approaches 0, +∞, or −∞). So,
solve the 0 × ∞ problem and exponentiate the
result.
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Very often, but not always, the answer to
a 00 problem will be 1. For more information on
this topic, see the Web page “lhop.htm” linked
to our home page. (You can skip over the first
part, which is an older version of everything I
have just told you about l’Hospital’s rule.)
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