
Lecture for Week 15 (Sec. 6.5)

Integration by Substitution

(also called “by change of variable”)
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I will start with an example that I’ll do sev-
eral different ways, to stress that they are all
equivalent. Consider the indefinite integral

I(x) =

∫ √
3x + 4 dx.

(That is, the problem is to find the most general
antiderivative of the integrand,

√
3x + 4.)
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Let u = 3x+4. Then du
dx = 3, which we write

as du = 3 dx, and hence conclude that dx = 1
3 du.

(This goes against the grain of what you were
taught, which is that the derivative is not really
a ratio of tiny numbers. At the end I’ll sketch a
justification of pretending that du and dx really
are numbers.)

Now

I ≡

∫

√
3x + 4 dx =

∫

√
u

1

3
du,
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which we further process as

1

3

∫

u1/2 du =
1

3

2

3
u3/2 + C =

2

9
(3x + 4)3/2 + C.

Here is a slightly different way of doing the
same problem. Again write u = 3x + 4. Then
x = 1

3 (u − 4), so dx = 1
3 du. Thus

I ≡

∫ √
3x + 4 dx =

∫

√
u

1

3
du = · · ·

and we can continue exactly as before.
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In more complicated problems you may need
to substitute the formula for x in terms of u back
into the integrand, too (example later). Whether
it’s neater to work with the old variable as a
function of the new one or the new one as a func-
tion of the old one depends on the problem.

(Apologies if you think this is a fuss over
nothing. Some students see the two methods as
very different and get upset in Math. 152 when the
first method needs to be replaced by the second
one in certain problems.)
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Now let’s consider a definite integral,

I ≡
∫ 1

0

√
3x + 4 dx.

Method 1: By our previous result for the
indefinite integral,

I =
2

9
(3x + 4)3/2

∣

∣

∣

∣

1

0

=
2

9
× 73/2 −

2

9
× 43/2.

Method 2: Suppose we had not already
found the antiderivative. It would be just as easy
to argue this way:
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Let u = 3x + 4. I see that

u = 4 when x = 0, u = 7 when x = 1.

Therefore (using dx = 1
3 du as before),

I ≡

∫ 1

0

√
3x + 4 dx =

∫ 7

4

√
u

1

3
du

=
1

3

2

3
u3/2

∣

∣

∣

∣

7

4

=
2

9

(

73/2 − 43/2
)

.

7



Another example: I(x) =

∫

2x dx
√

x2 + 1
.

Let u = x2 + 1, so du = 2 dx. (You should use
this kind of substitution whenever you see x dx

times a function of x2 + (constant).)

I =

∫

du
√

u
=

∫

u−1/2 du

= 2u+1/2 + C = 2
√

x2 + 1 + C.
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Let’s do it the other way: u = x2 + 1 implies
x =

√
u − 1 (if x is positive), so

dx =
1

2
√

u − 1
du.

I =

∫

1
√

u
× 2

√
u − 1 ×

1

2
√

u − 1
du = · · ·

as before.
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And finally, let’s make it a definite integral:

I ≡

∫ 1

0

2x dx
√

x2 + 1
.

I’ll do this by “Method 2”:

u = x2 + 1, du = 2 dx.

x = 0 ⇒ u = 1 ; x = 1 ⇒ u = 2.

I =

∫ 2

1

u−1/2 dx = 2u+1/2
∣

∣

∣

2

1
= 2

√
2 − 2.
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The big point here is, don’t write I =
∫ 1

0
u−1/2 du. That is false! This issue is similar

to those that arose in connection with the chain
rule and the implicit function theorem, where we
need to keep in mind the difference between the
numerical values of the independent and depen-
dent variables. The notation

I =

∫ x=1

x=0

u−1/2 du

is unambiguous and acceptable, however.
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I promised a problem that required an addi-
tional back-substitution.

I(x) ≡

∫

x3 dx
√

x2 + 1
.

u = x2 + 1, du = 2x dx.

I =

∫

x2 × 1
2 du

√
u

.

Now you somehow need to recognize that x2 =
u − 1 ; that’s fairly obvious, but it might be more
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obvious if you had solved for x =
√

u − 1 origi-
nally. Now

I =
1

2

∫

(

u1/2 − u−1/2
)

du

=
1

2
(x2 + 1)3/2 − (x2 + 1)1/2 + C.

(You can fill in the details.)
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Of course, there are lots of integrals by sub-
stitution that don’t involve square roots. Here
are some examples:

∫

sin2 x cosx dx =

∫

u2 du,

∫

(4x + 9)50 dx =
1

4

∫

u50 du,

∫

(lnx)2/3

x
dx =

∫

u2/3 du.
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Finally, let’s take a brief theoretical look at
integration by substitution. Suppose that the
formula introducing the new variable has the
form u = g(x). Then the substitution procedure
for an indefinite integral (antiderivative) gives us
∫

f
(

g(x)
)

g′(x) dx =

∫

f(u)du = F
(

g(x)
)

+ C,

where F is any function satisfying F ′ = f . From
this general pattern it is easy to see that integra-

tion by substitution is the integration rule that
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reverses the chain rule:

d

dx
F

(

g(x)
)

= F ′
(

g(x)
)

g′(x).

Applied to a definite integral, the rule yields

∫ b

a

f
(

g(x)
)

g′(x) dx =

∫ g(b)

g(a)

f(u) du

= F
(

g(b)
)

− F
(

g(a)
)

.
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Of course, this follows from the indefinite case
by the fundamental theorem; but there is an
alternative way of looking at it, directly from
the definition of an integral. We have f(u) =
(f ◦ g)(x). Let’s construct a Riemann sum for

approximating
∫ g(b)

g(a)
f(u) du with strip widths

∆ui ≈ g′(x∗

i ) ∆x with ∆x constant (see graph
on next slide). Because of the stretching of the
horizontal scale, this Riemann sum also approxi-

mates
∫ b

a
(f ◦ g)(x) g′(x) dx, as the formula says.
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Note that this graph is that of (f ◦ g)(x), not of
(f ◦ g)g′. ∆x = 1 but the true strip size is g′(x∗

i ).
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