Some definitions and theorems - Exam 3

1. Suppose that \(f \) is a function defined in an open interval containing the point \(c \). We say that \(c \) is a critical number of \(f \) if \(f \) is not differentiable at \(c \), or if \(f'(c) = 0 \).

2. Suppose that \(f \) is a function defined in an open interval \(I \). We say that a function \(F \) is an antiderivative (or a primitive) of \(f \) in \(I \) if \(F'(x) = f(x) \) for every \(x \) in \(I \).

3. Fermat’s Theorem Suppose that \(f \) is a function defined in an open interval, and let \(c \) be a point in the interval. If \(f \) has a local maximum or a local minimum at \(c \), then \(c \) is a critical number of \(f \).

4. Extreme Value Theorem Let \(a \) and \(b \) be real numbers with \(a < b \). Suppose that \(f \) is continuous on the closed interval \([a, b]\). Then there exist points \(p \) and \(q \) in \([a, b]\) such that \(f(p) \leq f(x) \leq f(q) \) for every \(a \leq x \leq b \).

5. Mean Value Theorem Let \(a \) and \(b \) be real numbers with \(a < b \). Suppose that \(f \) is continuous on the closed interval \([a, b]\), and that it is differentiable on the open interval \((a, b)\). Then there is some point \(c \) in \((a, b)\) such that

\[
\frac{f(b) - f(a)}{b - a} = f'(c).
\]

6. Fundamental Theorem of Calculus, Part I Let \(a \) and \(b \) be real numbers with \(a < b \). Suppose that \(f \) is continuous on the closed interval \([a, b]\). Define

\[
F(x) := \int_a^x f(t) \, dt, \quad a \leq x \leq b.
\]

Then \(F'(x) = f(x) \) for every \(a < x < b \), \(F'_+(a) = f(a) \), and \(F'_-(b) = f(b) \).

7. Fundamental Theorem of Calculus, Part II Let \(a \) and \(b \) be real numbers with \(a < b \). Suppose that \(f \) is continuous on the closed interval \([a, b]\). Let \(G \) be any function satisfying each of the following conditions: (i) \(G \) is continuous on the closed interval \([a, b]\), and (ii) \(G'(x) = f(x) \) for every \(a < x < b \). Then

\[
\int_a^b f(t) \, dt = G(b) - G(a).
\]