Exercise Set 3

From the text:

Page 99: 15–19, 22, 26, 32, 34, 37, 38
Page 100: 56, 64
Page 101: 76, 78, 79
Page 133: 4, 5, 6, 12, 13, 14–18, 24, 26, 28, 30

1. Let \(F(x) = \frac{x^2 - 1}{|x - 1|} \).
 (i) Sketch the graph of \(F \).
 (ii) Find \(\lim_{x \to 1^-} F(x) \).
 (iii) Find \(\lim_{x \to 1^+} F(x) \).
 (iv) Does \(\lim_{x \to 1} F(x) \) exist? Explain.

2. Find numbers \(a \) and \(b \) such that
 \[
 \lim_{x \to a} \frac{x^2 + ax - b}{x - a} = 2.
 \]

The next pair of examples is taken from the book Basic Analysis: Japanese Grade 11, translated and published by the American Mathematical Society, as part of the University of Chicago School Mathematics Project.

3. Find the values of the constants \(a \) and \(b \) such that
 \[
 \lim_{x \to 2} \frac{x^2 - ax + 8}{x^2 - (b + 2)x + 2b} = \frac{1}{5}.
 \]

4. Find the cubic function \(f(x) \) (to wit, a function of the form \(f(x) = ax^3 + bx^2 + cx + d \), where \(a, b, c, \) and \(d \) are constants) which satisfies the following conditions:
 \[
 \lim_{x \to 0} \frac{f(x)}{x} = 2 \quad \text{and} \quad \lim_{x \to 1} \frac{f(x)}{x - 1} = 1.
 \]

5. (i) Give a proof of the Sandwich Principle/Squeeze Theorem stated and discussed in lecture.
 (ii) Prove the following version of the Squeeze Theorem: Suppose that \(f(x) \leq g(x) \leq h(x) \) for every \(x > A \) (where \(A \) is some fixed real number). If \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} h(x) = L \) (where \(L \) is a real number), then \(\lim_{x \to \infty} g(x) = L \) as well.
 (iii) Use the theorem from part (ii) to evaluate \(\lim_{x \to \infty} \frac{\sin^2 x}{x^2} \).