1. Suppose that \(f \) is a differentiable function. Evaluate each of the following limits:

\[
\lim_{h \to 0} \frac{f(a + 2h) - f(a)}{h} \quad \text{and} \quad \lim_{h \to 0} \frac{f(a + h) - f(a - h)}{h}.
\]

2. For what values of \(a \) and \(b \) is the line \(2x + y = b \) tangent to the parabola \(y = ax^2 \) when \(x = 2 \)?

3. (taken from Basic Analysis: Japanese Grade 11) Two curves \(y = x^3 + ax \) and \(y = x^2 + bx + c \) pass through the point \((1,2)\) and have a common tangent line at this point. Find the values of the constants \(a \), \(b \), and \(c \).

4. Suppose that \(A \) is a fixed positive number.
 (a) Find an equation for each of the two tangent lines to the curve \(y = x^2 \) which pass through the point \((0,-A^2)\).
 (b) Find the value of \(A \) for which the aforesaid tangents are perpendicular to each other.

5. Let \(C \) denote the graph of the parabola \(y = 1 - x^2 \). Suppose that \(a \) is a (fixed) positive number, and let \(A \) denote the point \((0,1+a)\) on the \(y \)-axis. Suppose that the two tangent lines to \(C \) which pass through \(A \) touch \(C \) at the points \(P \) and \(Q \).
 (i) Find the co-ordinates of \(P \) and \(Q \) (in terms of \(a \)).
 (ii) Find the value of \(a \) such that the triangle formed by \(A \), \(P \), and \(Q \) is equilateral.

6. Suppose that \(f \) is differentiable at 0,

\[
\lim_{x \to 0} \frac{f(x)}{x} = 4, \quad \text{and} \quad \lim_{x \to 0} \frac{g(x)}{x} = 2.
\]

 (i) Find \(f(0) \).
 (ii) Find \(f'(0) \).
 (iii) Find \(\lim_{x \to 0} \frac{g(x)}{f(x)} \).

7. Suppose that \(f \) is a function that satisfies the equation

\[
f(x + y) = f(x) + f(y) + x^2y + xy^2
\]

for every pair of real numbers \(x \) and \(y \). Assume further that \(\lim_{x \to 0} \frac{f(x)}{x} = 1 \). Find (i) \(f(0) \), (ii) \(f'(0) \), and (iii) \(f'(x) \).
8. (from an old 151 (common) exam) Suppose that \(f \) is a differentiable function. It is known that the curve \(y = f(x) \) has exactly one horizontal tangent, corresponding to \(x = 2 \). Define \(g(x) = f(x^2 + x) \). Find all values of \(x \) for which the graph of \(g \) has horizontal tangents.

9. Suppose that \(f \) is a differentiable function such that \(f(1) = 1, f(2) = 2, f'(1) = 1, f'(2) = 2, \) and \(f'(3) = 3 \). If \(g(x) = f(x^3 + f(x^2 + f(x))) \), find \(g'(x) \) and hence \(g'(1) \).

10. Suppose \(a \) is a fixed positive number, and let \(P(x_0, y_0), y_0 \neq 0 \), be a fixed (but arbitrary) point on the astroid \(x^{2/3} + y^{2/3} = a^{2/3} \). Show that the length of the portion of the tangent line to the curve at \(P \) cut off by the co-ordinate axes is \(a \).

11. Suppose \(u(t) \) and \(v(t) \) are differentiable vector functions (of the real variable \(t \)). Show that

\[
\frac{d}{dt} [u(t) \cdot v(t)] = u(t) \cdot v'(t) + v(t) \cdot u'(t).
\]