1. If

\[f(x) = \int_0^{\cos x} \frac{g(x)}{\sqrt{1 + t^3}} \, dt \quad \text{and} \quad g(x) = \int_0^{\sin t^2} \left[1 + \sin(t^2) \right] \, dt, \]

determine the value of \(f'(\pi/2) \).

2. Show that the function

\[f(x) := \int_1^x \sqrt{1 + t^2} \, dt \]

is one-to-one. Compute \((f^{-1})'(0) \).

The next pair of questions is taken from Basic Analysis: Japanese Grade 11, translated and published by the American Mathematical Society.

3. Find a (continuous) function \(f \) such that

\[f(x) = x + \int_0^2 f(t) \, dt \]

for every real number \(x \).

4. Find a function \(f \) and a number \(a \) such that

\[\int_1^x f(t) \, dt = x^3 + ax - 5 \]

for every real number \(x \).