Set 3

1. Compute the area enclosed between the curve $y = x^3$ and the tangent line to this curve at the point $(1, 1)$.

2. Let L denote the straight line which passes through the origin, and is tangent to the curve $y = e^x$. Calculate the area enclosed by the said curve, L, and the y-axis.

3. Suppose $\alpha > 0$ is a fixed number, and let P denote the point $(0, \alpha)$. Let C denote the curve $y = -x^2$.
 (i) Find the equation(s) of the two tangents to C which pass through P.
 (ii) Find the area enclosed by the curve C and the two tangents (given above).

4. Suppose $m > 0$. Find all possible values of m such that the line $y = mx$ and the curve $y = x/(x^2 + 1)$ enclose a region. Find the area of the enclosed region.

5. Suppose that a line intersects the parabola $y = x^2$ in two points A and B as shown in the figure below. Let C be the point on the parabola where the tangent line is parallel to the line through A and B. Show that the area of the parabolic segment cut off from the parabola by the line AB is four-thirds the area of the triangle ABC.

![Diagram of parabola with points and lines]

6. The figure below shows a curve C with the property that, for every point P on the middle curve $y = 2x^2$, the areas A and B are equal. Find an equation for C.

![Diagram of curve C with points and lines]