1. Determine whether the following infinite integrals exist:

 (i) \(\int_0^\infty \frac{dx}{x^3 + 1} \)

 (ii) \(\int_0^\infty \frac{x}{x^2 + 1} \, dx \)

 (iii) \(\int_1^\infty \frac{3x^3 + x^2 + 5x + 2}{2x^5 + x^2 + 1} \, dx \)

 (iv) \(\int_2^\infty \frac{(x - 2)^2}{2x^{5/2} + x^2 + 3} \, dx \)

2. Suppose \(s > 0 \) is fixed, and let \(n \) be a positive integer.

 (i) Show that the infinite integral \(\int_0^\infty e^{-st^n} \, dt \) exists. (Use Limit Comparison or induction.)

 (ii) Show that
 \[\int_0^\infty e^{-st^n} \, dt = \frac{n}{s} \int_0^\infty e^{-st^n-1} \, dt. \]

 (iii) Deduce that
 \[\int_0^\infty e^{-st^n} \, dt = \frac{n!}{sn+1}. \]

3. Suppose \(n \) is a positive integer.

 (i) Show that
 \[\int_0^1 (\ln x)^n \, dx = -n \int_0^1 (\ln x)^{n-1} \, dx. \]

 (ii) Deduce that
 \[\int_0^1 (\ln x)^n \, dx = (-1)^n n!. \]

4. Let \(0 < \alpha < 1 \) be fixed. Evaluate the improper integral
 \[\int_{-2}^1 \frac{dx}{|x|^\alpha}. \]