1. (20 marks) Suppose that $f : \mathbb{C} \to \mathbb{C}$ is a function, and that f is continuous throughout the complex plane. Prove that the following are equivalent:

 (i) f is entire.

 (ii) $\int_T f(z) \, dz = 0$ for every simple, positively-oriented triangle T in the complex plane.

 (iii) f admits a primitive throughout \mathbb{C}, that is, there is a function F such that $F'(\omega) = f(\omega)$ for every complex number ω.

(Prove that (i) implies (ii), (ii) implies (iii), and (iii) implies (i). To prove that (ii) implies (iii), let $\omega \in \mathbb{C}$, and let ℓ_ω be the straight-line segment starting at $z = 0$ and ending at $z = \omega$. Define $F(\omega) := \int_{\ell_\omega} f(z) \, dz$.)