1. (7 marks) Prove the Minimum-Modulus Theorem: Let f be analytic in an open connected set D. Assume that there is a point $z_0 \in D$ such that $|f(z)| \geq |f(z_0)| > 0$ for every $z \in D$. Then f is constant in D.

2. Suppose that g is analytic in an open connected set D.

 (i) (8 marks) Define $G(z) := \exp(g(z))$, $z \in D$. Prove that g is constant in D if G is constant in D.

 (ii) (10 marks) Assume that there exists a point $z_0 \in D$ such that

 \[\text{Re}(g(z)) \leq \text{Re}(g(z_0)) \quad \text{for every } z \in D. \]

 Prove that g is constant in D. (Use (i).)