1. Suppose that \(n \) is a fixed positive integer, and that \(z_1, \ldots, z_n \) are complex numbers. Use the principle of mathematical induction to prove each of the following:

 (i) (5 marks)
 \[
 \left(\sum_{k=1}^{n} z_k \right) = \sum_{k=1}^{n} \bar{z}_k
 \]

 (ii) (5 marks)
 \[
 (z_1 z_2 \cdots z_n) = \bar{z}_1 \bar{z}_2 \cdots \bar{z}_n
 \]

2. (10 marks) Let \(N \) be a fixed positive integer. Consider the polynomial

 \[
 P(z) := \sum_{k=0}^{N} a_k z^k, \quad z \in \mathbb{C},
 \]

 where every \(a_k \), \(0 \leq k \leq N \), is a real number. Prove that a complex number \(\omega \) is a root of \(P \) if and only if \(\overline{\omega} \) is also a root of \(P \); that is, prove that \(P(\omega) = 0 \) if and only if \(P(\overline{\omega}) = 0 \).