Example Sheet 11b

1. The purpose of this example is to compute the following integral:

\[\int_0^\infty \frac{t^p}{1+t^2} \, dt, \]

where \(-1 < p < 1\) is fixed.

Let \(D := \mathbb{C} \setminus \{ iy : y \leq 0 \} \) and let \(z \mapsto \log(z) \) denote the unique branch of the logarithm defined on \(D \), satisfying the condition \(\log(1) = 0 \). Let \(z \mapsto z^p \) denote the corresponding branch of the power function on \(D \), that is, \(z^p := \exp(p \log(z)), z \in D \). Define

\[f(z) := \frac{z^p}{1+z^2}. \]

Let \(\epsilon \) and \(R \) be positive numbers with \(\epsilon < R \). Consider the contour \(C \) comprising the following four pieces: the straight-line segment \(L_1 \) (along the real axis) from \(z = \epsilon \) to \(z = R \), followed by the semi-circular arc \(\Gamma_R \) (traversed in the counterclockwise direction) from \(z = R \) to \(z = -R \), followed by the line segment \(L_2 \) (along the real axis) from \(z = -R \) to \(z = -\epsilon \), followed by the semi-circular arc \(\gamma_\epsilon \) (traversed in the clockwise direction) from \(z = -\epsilon \) to \(z = \epsilon \).

(i) Compute

\[\int_C f(z) \, dz. \]

(ii) Parametrize the straight-line segments in \(C \) to obtain the following:

\[[1 + (-1)^p] \int_\epsilon^R \frac{t^p}{1+t^2} \, dt = \pi \exp\left(\frac{ip\pi}{2}\right) - \int_{\gamma_\epsilon} f(z) \, dz - \int_{\Gamma_R} f(z) \, dz. \]

(iii) Show that the integrals of \(f \) along \(\gamma_\epsilon \) and \(\Gamma_R \) tend to zero as \(\epsilon \to 0^+ \) and \(R \to \infty \), respectively.

(iv) Show that

\[\int_0^\infty \frac{t^p}{1+t^2} \, dt = \lim_{R \to \infty} \int_\epsilon^R \frac{t^p}{1+t^2} \, dt = \frac{\pi}{2 \cos \left(\frac{p\pi}{2}\right)}. \]

2. Suppose that \(0 < \alpha < 1 \) is fixed. Use Example 1 to deduce that

\[\int_0^\infty \frac{x^{\alpha-1}}{1+x} \, dx = \frac{\pi}{\sin(\pi\alpha)}. \]