Example Sheet 9

1. Use induction to complete the proof of (the general case of) Cauchy’s Integral Formula for Derivatives.

2. Suppose that f is analytic in a region D. It was proved in lecture that, if $f'(z) = 0$ for every $z \in D$, then f is a constant throughout D. Generalize this to the following: if f is analytic in a region D and $f^{(n)}(z) = 0$ for some $n \in \mathbb{N}$ and every $z \in D$, then f must be a polynomial of degree at most $n - 1$. (Suggestion: Use induction on n.)

3. (i) Suppose that f is analytic at every point of the closed disc $\overline{D}(a; R)$, where $a \in \mathbb{C}$ and $R > 0$. Prove Cauchy’s inequality:

$$|f^{(n)}(a)| \leq \frac{M n!}{R^n},$$

where $M := \sup\{|f(z)| : z \in C(a; R)\}$.

(ii) Use (i) to prove Liouville’s Theorem.

(iii) Suppose that f is entire and $|f(z)| \leq A + B|z|^{3/2}$ for every $z \in \mathbb{C}$, where A and B are real constants. Show that f is a linear polynomial (i.e., a polynomial of degree at most 1).

(iv) Suppose that f is an entire function. Assume that there exist positive numbers A and T and a positive integer m such that $|f(z)| \leq A|z|^m$ whenever $|z| > T$. Show that f is a polynomial of degree at most m.

4. Suppose that $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial such that $|P(z)| \leq 1$ for every $z \in \overline{D}(0; 1)$. Show that $|a_k| \leq 1$ for every $0 \leq k \leq n$.

5. Suppose that f is entire and $|f'(z)| \leq |z|$ for every $z \in \mathbb{C}$. Show that $f(z) = a + cz^2$, where $a, c \in \mathbb{C}$ and $|c| \leq 1/2$.

6. Prove the following special case of Morera’s Theorem: Let f be continuous at every point in an open convex set S. The following are equivalent:

(a) $\int_{C} f(z) \, dz = 0$ for every simple closed contour contained in S.

(b) If Δ is any triangle contained in S and $\partial \Delta$ denotes its boundary, then $\int_{\partial \Delta} f(z) \, dz = 0$.

(c) f is analytic throughout S.

(See Question 2 in Example Sheet 7.)

7. Suppose that f is entire and that for every $z \in \mathbb{C}$, either $|f(z)| \leq 1$ or $|f'(z)| \leq 1$.

(i) Use a line integral to show that $|f(z)| \leq A + |z|$, where $A = \max\{1, |f(0)|\}$.

(ii) Deduce that f must be a linear polynomial.