1. (i) Determine
\[\lim_{n \to \infty} \frac{2n^2 + n + 1}{n^2 - n + 2}. \]
(ii) Give a formal proof to justify your assertion in (i).

2. This was discussed in lecture. Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a sequence of real numbers, and let \(L \) be a fixed real number. Verify that the following statements are equivalent:
 (a) The sequence \(\{a_n\}_{n=1}^{\infty} \) does not converge to \(L \).
 (b) There exists a positive number \(\epsilon_0 \), and a sequence \(\{n_k : k \in \mathbb{N}\} \) of positive integers, such that \(n_k < n_{k+1} \) for every \(k \), and \(|a_{n_k} - L| \geq \epsilon_0 \) for every \(k \).
 (c) There exists a positive number \(\epsilon_0 \) such that \(|a_n - L| \geq \epsilon_0 \) for infinitely many values of \(n \).

3. Let \(a_n := (-1)^n, n \in \mathbb{N} \). Use the preceding result to show that \(\{a_n\}_{n=1}^{\infty} \) does not converge to any real number.

4. (i) Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a sequence of real numbers, and that \(\lim_{n \to \infty} a_n = L \). Prove that \(\lim_{n \to \infty} |a_n| = |L| \).
 (ii) Give an example of a sequence \(\{a_n\}_{n=1}^{\infty} \) such that \(\lim_{n \to \infty} |a_n| \) exists, but \(\lim_{n \to \infty} a_n \) does not exist.

5. Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a sequence of real numbers. Prove that the following statements are equivalent:
 (a) \(\lim_{n \to \infty} a_n = 0 \).
 (b) \(\lim_{n \to \infty} |a_n| = 0 \).
 (c) \(\lim_{n \to \infty} a_n^2 = 0 \).

6. (i) Suppose that \(\{c_n\}_{n=1}^{\infty} \) is a sequence of real numbers satisfying the following condition: there exists a positive integer \(n_0 \) such that \(c_n \geq 0 \) for every \(n \geq n_0 \). Assume further that \(\lim_{n \to \infty} c_n = L \). Prove that \(L \geq 0 \). (Suppose that \(L < 0 \) and derive a contradiction.)
 (ii) Give an example of a sequence of positive numbers which converges to zero.
 (iii) Suppose that \(\{a_n\}_{n=1}^{\infty} \) and \(\{b_n\}_{n=1}^{\infty} \) are sequences satisfying the following condition: there exists a positive integer \(n_0 \) such that \(a_n \geq b_n \) for every \(n \geq n_0 \). Assume further that \(\lim_{n \to \infty} a_n = A \) and \(\lim_{n \to \infty} b_n = B \). Use (i) to show that \(A \geq B \).

7. Questions from the text:
 7.1(c), (d); 7.2 for these sequences
 7.3(e), (g), (h), (i), (m), (p)
 7.4, 7.5(a), 8.8(a)
 8.4, 8.7(b)