1. Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a sequence of real numbers. Prove that the following are equivalent:
 (a) \(\lim \sup_{n \to \infty} a_n = +\infty \).
 (b) There exists a subsequence of \(\{a_n\}_{n=1}^{\infty} \), say \(\{a_{n_k}\}_{k=1}^{\infty} \), such that \(\lim_{k \to \infty} a_{n_k} = +\infty \).

2. Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a sequence of real numbers. Prove that the following are equivalent:
 (a) \(\lim_{n \to \infty} a_n = +\infty \).
 (b) \(\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n = +\infty \).

3. Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a bounded sequence, and let \(m = \liminf_{n \to \infty} a_n \). Show that there is a subsequence of \(\{a_n\}_{n=1}^{\infty} \) which converges to \(m \).

Let \(\{a_n\}_{n=1}^{\infty} \) be a sequence of real numbers. A real number \(\lambda \) is said to be a subsequential limit of \(\{a_n\}_{n=1}^{\infty} \) if there is a subsequence of \(\{a_n\}_{n=1}^{\infty} \) which converges to \(\lambda \).

4. Let \(\lambda \) be a subsequential limit of a bounded sequence \(\{a_n\}_{n=1}^{\infty} \). Prove that \(\liminf_{n \to \infty} a_n \leq \lambda \leq \limsup_{n \to \infty} a_n \).

5. Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a bounded sequence. Show that the following are equivalent:
 (a) \(M = \limsup_{n \to \infty} a_n \).
 (b) \(M \) is the largest subsequential limit of \(\{a_n\}_{n=1}^{\infty} \).

6. Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a bounded sequence. Show that the following are equivalent:
 (a) \(m = \liminf_{n \to \infty} a_n \).
 (b) \(m \) is the smallest subsequential limit of \(\{a_n\}_{n=1}^{\infty} \).

7. (Ratio Test) (i) Let \(\{a_n\}_{n=1}^{\infty} \) be a sequence of nonzero real numbers, and let
 \[
 a := \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \text{and} \quad A := \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.
 \]
 Prove the following:
 (a) If \(A < 1 \), then the series \(\sum_{n=1}^{\infty} a_n \) converges absolutely.
 (b) If \(a > 1 \), then the series \(\sum_{n=1}^{\infty} a_n \) diverges.
 (ii) Give examples to show that no conclusion can be drawn if \(a \leq 1 \leq A \).

8. (Root Test) (i) Let \(\{a_n\}_{n=1}^{\infty} \) be a sequence of real numbers. Prove the following statements:
 (a) If \(\limsup_{n \to \infty} |a_n|^{1/n} = A < 1 \), then the series \(\sum_{n=1}^{\infty} a_n \) converges absolutely.
 (b) If \(\limsup_{n \to \infty} |a_n|^{1/n} = A > 1 \), or if \(\limsup_{n \to \infty} |a_n|^{1/n} = +\infty \), then the series \(\sum_{n=1}^{\infty} a_n \) diverges.
 (ii) Give examples to show that no conclusion can be drawn if \(\limsup_{n \to \infty} |a_n|^{1/n} = 1 \).