Exercise Set 4

1. Suppose that V is a vector space. Show that the discrete metric on V cannot be induced by any norm on V.

The following question is taken from a 1993 examination given in the University of Toronto. The examinees were students of electrical engineering, taking a course in Data Communication.

2. For a particular signal processing problem, Engineer A defines a function $d(x, y)$ for all $x, y,$ and z belonging to a set S with the following properties:
 (i) $d(x, y) = 0$ if and only if $x = y$.
 (ii) $d(x, y) = d(y, x)$.
 (iii) $d(x, z) \leq d(x, y) + d(y, z)$.
 Engineer A claims that $d(x, y)$ is a metric.
 (a) Engineer B points out that d should satisfy one more condition before it can be called a metric. Is he right? If so, what is the condition?
 (b) Engineer A asserts that his function is still a metric, nevertheless. Is he right?

3. Suppose that M is a nonempty set and $D : M \times M \to \mathbb{R}$ is a function satisfying the following conditions:
 (i) $D(a, a) = 0$ for every $a \in M$.
 (ii) $D(a, b) \neq 0$ if $a \neq b$.
 (iii) $D(a, b) + D(b, c) \geq D(c, a)$ for every $a, b, c \in M$.
 Show that D is a metric on M.

4. Suppose that (X, d) is a metric space. Show that the function $D(x, y) := \frac{d(x, y)}{1 + d(x, y)}$, $x, y \in X$, is a metric on X.