Exercise Set 6

Definition. Suppose V is a linear space. A function $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R}$ is said to be an inner product on V if the following conditions are satisfied:

1. **(IP1)** $\langle x, y \rangle = \langle y, x \rangle$ for every $x, y \in V$.
2. **(IP2)** $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for all $x, y, z \in V$.
3. **(IP3)** $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for all $x, y \in V$ and every $\alpha \in \mathbb{R}$.
4. **(IP4)** $\langle x, x \rangle \geq 0$ for every $x \in V$ and $\langle x, x \rangle = 0$ if and only if $x = \mathbf{0}$, where $\mathbf{0}$ denotes the zero vector in V.

The pair $(V, \langle \cdot, \cdot \rangle)$ is called an inner-product space.

1. Suppose $(V, \langle \cdot, \cdot \rangle)$ is an inner product space. Prove the following statements:
 (i) Show that $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ for all $x, y, z \in V$.
 (ii) Show that $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$ for all $x, y \in V$ and every $\alpha \in \mathbb{R}$.
 (iii) Show that $\langle x, \mathbf{0} \rangle = 0$ for every $x \in V$.

2. Suppose $(V, \langle \cdot, \cdot \rangle)$ is an inner product space. Prove the Bunyakowski-Cauchy-Schwarz inequality:

$$|\langle x, y \rangle| \leq \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}, \quad \forall x, y \in V.$$

Suggestion: First dispose of the case when x or y is the zero vector. If neither x nor y is zero, consider the polynomial $p(t) := \langle x + ty, x + ty \rangle$, $t \in \mathbb{R}$, and exploit the fact that $p(t) \geq 0$ for every t (because of Condition (IP4) of an inner product).

3. Suppose $(V, \langle \cdot, \cdot \rangle)$ is an inner product space. Define

$$\|x\| := \sqrt{\langle x, x \rangle}, \quad x \in V.$$

Prove that $\| \cdot \|$ is a norm on V. This is called the norm induced by the inner product.

4. Suppose $(V, \langle \cdot, \cdot \rangle)$ is an inner product space, and let $\| \cdot \|$ denote the norm induced by the inner product. Establish the Parallelogram Identity:

$$\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2), \quad \forall x, y \in V.$$

5. (i) Show that ℓ^2_n is an inner-product space (more specifically, find an inner product on \mathbb{R}^n which induces the Euclidean norm $\| \cdot \|_2$).
 (ii) Use Question 5 to show that ℓ^p_n is not an inner-product space for $p \in [1, 2) \cup (2, \infty]$ (that is, the p-norm $\| \cdot \|_p$ on \mathbb{R}^n cannot be induced by an inner product for $p \neq 2$).

6. (i) Suppose that $\{a_n\}$ and $\{b_n\}$ are sequences in ℓ^2. Show that the sequence $\{c_n\}$, defined by $c_n := a_n b_n$, $n \in \mathbb{N}$, belongs to ℓ^1.
 (ii) Show that the function $\langle \cdot, \cdot \rangle : \ell^2 \times \ell^2 \rightarrow \mathbb{R}$ given by

$$\langle x, y \rangle := \sum_{n=1}^{\infty} x_n y_n, \quad x = \{x_n\}, \ y = \{y_n\} \in \ell^2,$$

is an inner product on ℓ^2.
 (iii) Verify that the norm induced by the inner product above is the usual norm on ℓ^2. (Thus ℓ^2 is an inner-product space which is complete with respect to the norm induced by the inner product; such spaces are called Hilbert Spaces.)
 (iv) Show that the ℓ^p-norm is not induced by an inner product for any $p \neq 2$.

1