Spring 2005 Math 152
10 Infinite Sequences and Series
10.6 Representations of Functions as Power Series
Wed, 06/Apr ©2005, Art Belmonte

Summary

THEOREM

A power series \(f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \) having a radius of convergence \(R > 0 \) is differentiable and integrable on the interior of its interval of convergence; i.e., \(|x - a| < R \) or \((a - R, a + R) \). Essentially, we may differentiate or integrate term-by-term.

\[
f'(x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} c_n (x - a)^n \right) = \sum_{n=1}^{\infty} n c_n (x - a)^{n-1}
\]

\[
\int f(x) \, dx = \int \sum_{n=0}^{\infty} c_n (x - a)^n \, dx = C + \sum_{n=0}^{\infty} \frac{c_n (x - a)^{n+1}}{n+1}
\]

The radii of convergence of the derivative and antiderivative series representations are each equal to \(R \). (NOTE: The intervals of convergence of these representations may not be the same be the same as the interval of convergence \(I \) of the original power series. At the endpoints of \(I \), if any, convergence must still be checked.)

A way to obtain the series representation of a function

Starting with the geometric series \(\sum_{n=0}^{\infty} x^n \), which converges to \(\frac{1}{1-x} \) for \(|x| < 1 \) and diverges otherwise, we may be able to obtain series representations for other functions by algebraic manipulation, differentiation or indefinite integration, and/or use of the preceding theorem.

While this is by no means systematic, it will have to do until a more sure-fire technique is introduced in the next section: Taylor and Maclaurin series.

Hand Examples

Example A

Find a power series representation for \(f(x) = \frac{2}{3x + 4} \) and determine its radius and interval of convergence.

Solution

- Use algebraic manipulation together with the Geometric Series Theorem (GST).

\[
\frac{2}{3x + 4} = \frac{2}{4 \left(1 - \left(-\frac{3}{4}x\right)\right)} = \frac{1}{2} \left(1 - \left(-\frac{3}{4}x\right)\right) = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{3}{4}x\right)^n, \quad \text{for } \left|-\frac{3}{4}x\right| < 1 \text{ via GST}
\]

We require \(\left|-\frac{3}{4}x\right| < 1 \) or \(|x| < \frac{4}{3} \). Therefore, \(R = \frac{4}{3} \) and the center of \(I \) is \(x = 0 \).

- At \(x = -\frac{4}{3} \), the left endpoint of \(I \), the series is \(\sum \frac{1}{2} \), which diverges by the Test for Divergence since \(\lim_{n \to \infty} \frac{1}{2^n} = 0 \).

- At \(x = \frac{4}{3} \), the right endpoint of \(I \), the series is \(\sum \left(-\frac{1}{2}\right) \), which diverges by oscillation.

- Therefore, \(I = \left(-\frac{4}{3}, \frac{4}{3}\right) \).

Example B

Find a power series representation for \(f(x) = \frac{x}{x^2 - 3x + 2} \) and determine its radius and interval of convergence.

Solution

- First split the expression into a sum of partial fractions.

\[
\frac{x}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}
\]

\[
x = A(x-2) + B(x-1)
\]

Thus \(A + B = 1 \) and \(-2A - B = 0\). So \(B = -2A \) whence \(-A = 1 \) or \(A = -1 \) and \(B = 2 \). Therefore,

\[
\frac{x}{x^2 - 3x + 2} = \frac{-1}{x-1} + \frac{2}{x-2}
\]

- Now use algebraic manipulation and the GST.

\[
\frac{1}{1-x} - \frac{2}{2-x} = \frac{1}{1-x} - \frac{1}{1-\frac{1}{2}x}
\]

If \(|x| < 1 \) and \(\left|\frac{1}{2}\right| < 1 \) via GST:

\[
\sum_{n=0}^{\infty} x^n - \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n x^n = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^n}\right) x^n
\]

\[
\sum_{n=1}^{\infty} \left(1 - \frac{1}{2^n}\right) x^n
\]
We require both $|x| < 1$ and $\frac{1}{|x|} < 1$; that is, both $|x| < 1$ and $|x| < 2$. In other words, we need $|x| < 1$. Therefore, $R = 1$ and the center of I is $x = 0$.

- At $x = -1$, the left endpoint of I, the series is $\sum a_n = \sum (1 - \frac{1}{2^k}) (-1)^n$, which diverges by the Test for Divergence since $\lim a_n \neq 0$.

- At $x = 1$, the right endpoint of I, the series is $\sum a_n = \sum (1 - \frac{1}{2^k})$, which diverges by the Test for Divergence since $\lim a_n \neq 0$.

- Therefore, $I = (-1, 1)$.

622/6

Find a power series representation for $f(x) = \frac{1}{x^4 + 16}$ and determine its radius and interval of convergence.

Solution

- Use algebraic manipulation and the GST.

\[
\frac{1}{x^4 + 16} = \frac{1}{16 \left(1 - \left(-\frac{x^4}{16} \right) \right)} = \frac{1}{16} \sum_{n=0}^{\infty} \left(-\frac{x^4}{16} \right)^n, \text{ if } \left| -\frac{x^4}{16} \right| < 1
\]

\[
= \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{16^{n+1}}
\]

We require $\left| -\frac{x^4}{16} \right| < 1$ or $|x|^4 < 16$ or $|x| < 2$. Therefore, $R = 2$ and the center of I is $x = 0$.

- At $x = -2$, the left endpoint of I, the series is $\sum \frac{(-1)^n}{16}$, which diverges by oscillation.

- At $x = 2$, the right endpoint of I, the series is also $\sum \frac{(-1)^n}{16}$, which diverges by oscillation.

- Therefore, $I = (-2, 2)$.

622/10

Find a power series representation for $f(x) = \ln(1 + x)$ and determine its radius and interval of convergence.

Solution

- Note that $\ln(1 + x)$ is an antiderivative of $\frac{1}{1 + x}$.

\[
\ln(1 + x) = \int \frac{1}{1 + x} \, dx = \int \frac{1}{1 - (-x)} \, dx = \int \sum_{n=0}^{\infty} (-x)^n \, dx, \quad \text{if } |x| < 1
\]

\[
= C + \sum_{n=0}^{\infty} \frac{(-1)^n \int x^n \, dx}{n + 1}
\]

\[
= C + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}
\]

\[
0 = \ln(1 + 0) = C
\]

Thus $\ln(1 + x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}$.

We require $|x| < 1$ or $|x| < 1$. Therefore, $R = 1$ and the center of I is $x = 0$.

- At $x = -1$, the left endpoint of I, the series is $- \sum \frac{1}{k}$, which diverges to $-\infty$ since the p-series $\sum \frac{1}{k}$ diverges to ∞ ($p = 1 \leq 1$).

- At $x = 1$, the right endpoint of I, the series is $\sum \frac{(-1)^{k-1}}{k}$, which converges by the AST since $\frac{1}{k} \downarrow 0$.

- Therefore, $I = (-1, 1)$.

622/11

Find a power series representation for $f(x) = \frac{1}{(1 + x)^3}$ and determine its radius and interval of convergence.

Solution

- By 622/10 we have $\ln(1 + x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}$ for $x \in (-1, 1]$. Hence

\[
(1 + x)^{-1} = \frac{1}{1 + x}
\]

\[
= \frac{d}{dx} (\ln(1 + x))
\]

\[
= \frac{d}{dx} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k} \right)
\]

\[
= \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^{k-1}}{k}
\]

\[
= \sum_{n=0}^{\infty} \frac{(-1)^n x^n},
\]

which holds for $x \in (-1, 1)$ but clearly not at the endpoints of I. Thus $(1 + x)^{-1} = \sum_{n=0}^{\infty} (-1)^n x^n$ for $|x| < 1$.

determine its radius and interval of convergence.

For the series to converge by the Ratio Test, we need

\[
\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{(-1)^{k+1} x^k}{(-1)^k x^{k-1}} \right| = \left| \frac{x}{1} \right| = |x| < 1.
\]

Hey campers, the third time’s the charm!

\[
(1 + x)^{-3} = \frac{d}{dx} \left(\frac{1}{1 + x} \right)^2 = \frac{d}{dx} \left(-\sum_{n=0}^{\infty} (-1)^n x^n \right) = \sum_{k=1}^{\infty} (-1)^k (k+1) x^k - 2.
\]

We conclude that

\[
\frac{1}{(1 + x)^3} = \sum_{n=0}^{\infty} \frac{(-1)^n (n+2) (n+1) x^n}{2}, \quad \text{for } |x| < 1.
\]

622/12

Find a power series representation for \(f(x) = x \ln(1 + x) \) and determine its radius and interval of convergence.

Solution

- By 622/10 we have

\[
x \ln(1 + x) = x \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{k+1}}{k}.
\]

- For the series to converge by the Ratio Test, we need

\[
\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{(-1)^{k+1} x^k}{(-1)^k x^{k-1}} \right| = \lim_{k \to \infty} \left| \frac{x}{1} \right| = |x| < 1.
\]

Therefore, \(R = 1 \) and the center of \(I \) is \(x = 0 \).

- At \(x = -1 \), the left endpoint of \(I \), the series is \(\sum_{k} \frac{1}{k} \), the divergent harmonic series.

- At \(x = 1 \), the right endpoint of \(I \), the series is \(\sum_{k} (-1)^{k-1} \frac{1}{k} \), which converges by the AST since \(\frac{1}{k} \downarrow 0 \).

Therefore, \(I = (-1, 1] \).

622/22

Evaluate the indefinite integral \(\int \tan^{-1} (x^2) \, dx \) as a power series.

Solution

- From Example 7 on page 621 of Stewart we have

\[
\tan^{-1} \theta = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{2n+1}, \quad \text{for } |\theta| \leq 1.
\]

- Thus \(\tan^{-1} (x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1}, \quad \text{for } |x| \leq 1. \)

- Hence

\[
\int \tan^{-1} (x^2) \, dx = C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+3}}{(2n+1)(4n+3)}, \quad \text{for } |x| < 1.
\]

622/28

Show that the function

\[
f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}
\]

is a solution of the differential equation

\[
f''(x) + f(x) = 0.
\]

Solution

- We have

\[
f'(x) = \sum_{n=1}^{\infty} \frac{(-1)^n (2n) x^{2n-1}}{(2n)!} = \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}.
\]

- In turn,

\[
f''(x) = \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1) x^{2n-2}}{(2n-1)!}
\]

\[
= \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-2}}{2(2n-2)!}
\]

\[
= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1) x^{2(n-1)}}{(2(n-1))!}
\]

\[
= \sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^{2k}}{(2k)!}
\]

\[
= - \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.
\]

- Hence

\[
f''(x) + f(x) = \left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \right) + \left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \right) = 0.
\]

Therefore, \(f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \) is a solution of the stated differential equation.
MATLAB Examples

s622x16

Find a power series representation for \(f(x) = \frac{1}{x^2 + 25} \) and graph \(f(x) \) and several partial sums \(s_n(x) \) on the same plot.

Solution

Use algebraic manipulation and the GST.

\[
\frac{1}{x^2 + 25} = \frac{1}{25} \left(1 - \frac{1}{25} x^2 \right) = \frac{1}{25} \left(1 - \frac{1}{(2n+1)(4n+3)} \right)
\]

\[
= \frac{1}{25} \sum_{n=0}^{\infty} \left(-\frac{1}{25} \right)^n x^{2n}, \text{ if } \left| -\frac{1}{25} x^2 \right| < 1
\]

\[
= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{25^{n+1}}
\]

We require \(\left| -\frac{1}{25} x^2 \right| < 1 \) or \(|x|^2 < 25 \) or \(|x| < 5\). Therefore, \(R = 5 \) and the center of \(I \) is \(x = 0 \). Each successive partial sum of the series representation approximates the graph of \(f(x) \) more closely.

622/24

Use a power series to approximate the definite integral

\[
\int_0^{1/2} \tan^{-1}(x^2) \, dx
\]

to six decimal places (\(\epsilon = 5 \times 10^{-7} \)).

Solution

- Using the alternating series from 622/22, we have

\[
\int_0^{1/2} \tan^{-1}(x^2) \, dx = \left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+3}}{(2n+1)(4n+3)} \right) \bigg|_{x=0}^{x=1/2}
\]

\[
= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n(4n+1)}
\]

- By the ASET, we need

\[
|R_N| \leq |a_{N+1}| = \frac{1}{(2N+3)(4N+7)2^{4N+7}} \leq 5 \times 10^{-7}
\]

which implies \(N \geq 1.84 \). So choose \(N = 2 \), for which the partial sum of the series is

\[
\sum_{n=0}^{2} \frac{(-1)^n}{2^n(4n+1)} \approx 0.0413.
\]

% Stewart 622/24

% syms N

N = 0:3;

v = 1 ./ ((2*N+3) * (4*N+7) * 2^(4*N+7)); pretty(v)

\[
\begin{array}{c|c}
N & v \\
\hline
0 & 3.72e^{-4} \\
1 & 8.88e^{-6} \\
2 & 2.91e^{-7} \\
3 & 1.12e^{-8} \\
\end{array}
\]

% syms n

a = (-1)^n / ((2*n+1) * (4*n+3) * 2^(4*n+3)); pretty(a)

\[
\begin{array}{c|c|c}
N & a \\
\hline
0 & (-1) \\
1 & (-1) \\
2 & (-1) \\
3 & (-1) \\
\end{array}
\]

% echo off; diary off