Section 1.1

1. [9/20e] Draw solution curves for the differential equation \(\frac{dy}{dt} = y = y (y - 3) \) for \(-5 \leq t \leq 5\), \(-5 \leq y \leq 5\). Classify any equilibrium solutions. The equation is autonomous (the derivative only depends on the dependent variable \(y \), not on the independent variable \(t \)). The plot is easily drawn by hand. Verify with the Java routine dfield or your TI-Nspire CX CAS calculator (see video).

2. [9/24] A drug is administered intravenously. Fluid containing 5 mg/cm\(^3\) of the drug enters the patient’s bloodstream at a rate of 100 cm\(^3\)/h. The drug is absorbed by the body tissues or otherwise leaves the bloodstream at a rate proportional to the amount present, with a rate constant of \(r = 0.4 \text{ h}^{-1} \).

 (a) Write a differential equation for the amount of drug present in the bloodstream at any time.

 (b) How much of the drug is present in the bloodstream after a long time?

3. [10/29] Employ MATLAB to draw a direction field and solution curves for the differential equation \(y' = t + 3y \), which is nonautonomous. Use my routine dfic and the command dsolve. Describe how solutions behave as \(t \to \infty \).

4. [10/32] Draw a direction field and a few solution curves for \(y' = -\frac{2t + y}{2y} \). You may use dfield or your calculator (see video).

Section 1.2

1. [16/2a] Solve \(\frac{dy}{dt} = y = y - 5 \), \(y (0) = y_0 \) (an initial value problem). Plot solutions for several values of \(y_0 \). Describe how solutions resemble, and differ from, each other.

2. [17/8] Consider a population of field mice that grows at a rate proportional to the current population, so that \(\frac{dp}{dt} = p' = rp \). (b) Find the rate constant \(r \) if the population doubles in \(N \) days. (a) Find \(r \) if \(N = 30 \).

Section 1.3

1. [24/2] Determine the order of the differential equation \((1 + y^2) \frac{d^2y}{dt^2} + t \frac{dy}{dt} + y = e^t; \) also state whether it is linear or nonlinear.

2. [24/6] Same as #1 for \(\frac{d^3y}{dt^3} + t \frac{dy}{dt} + (\cos^2 t) y = t^3. \)

3. [25/10] Verify that \(y_1 (t) = \frac{1}{3} t \) and \(y_2 (t) = \frac{1}{3} t + e^{-t} \) are solutions of the 4th order constant coefficient linear differential equation \(y^{(4)} + 4y''' + 3y = t. \)

4. [25/12] Verify that \(y_1 (t) = t^{-2} \) and \(y_2 (t) = t^{-2} \ln t \) are solutions of the 2nd order variable coefficient linear differential equation \(t^2y'' + 5ty' + 4y = 0. \)

5. [25/18] Determine values of the constant \(r \) for which the differential equation \(y''' - 3y'' + 2y' = 0 \) has solutions of the form \(y = e^{rt}. \)

6. [25/20] Determine values of the constant \(r \) for which the differential equation \(t^2y'' - 4ty' + 4y = 0 \) has solutions of the form \(y = t^r \) for \(t > 0. \)

NOTES