7 The Laplace Transform

Summary

Definition

The **convolution** of two piecewise continuous functions \(f \) and \(g \) is

\[
(f * g)(t) = \int_0^t f(t - v)g(v) \, dv
\]

Properties of the convolution

For piecewise continuous functions \(f, g, \) and \(h \), we have

1. \(f * g = g * f \) (The convolution is commutative.)
2. \(f * (g + h) = f * g + f * h \) (It is distributive.)
3. \((f * g) * h = f * (g * h) \) (It is associative.)
4. \(f * 0 = 0 \) (A function convolved with zero is zero.)

The Convolution Theorem

If \(f \) and \(g \) are piecewise continuous functions on \([0, \infty)\) of exponential order with Laplace transforms \(\mathcal{L}\{f\} = F(s) \) and \(\mathcal{L}\{g\} = G(s) \) then

\[
\mathcal{L}\{f * g\} = F(s)G(s).
\]

Initial value problems

The **transfer function** \(H(s) \) of a linear system \(L[y] = g(t) \) with all initial conditions zero is \(H(s) = Y(s)/G(s) \); i.e., the Laplace transform of the output function \(y(t) \) divided by that of the input function \(g(t) \). If \(L[y] \) has constant coefficients, then \(H(s) \) is the reciprocal of \(p(s) \), the characteristic polynomial of the corresponding homogeneous equation; i.e., \(H(s) = 1/p(s) \).

The **impulse response function** is the inverse Laplace transform of the transfer function; i.e., \(h(t) = \mathcal{L}^{-1}\{H(s)\} \). Physically, it describes the solution when a mass-spring system is struck by a hammer or a baseball is struck by a bat. (In Section 7.8 we'll study impulses and the Dirac delta function, which model these physical situations.)

Theorem: Solution using the impulse response function

Let \(I \) be an open interval containing the origin, with \(a, b, \) and \(c \) constants and \(g \) continuous on \(I \). The unique solution to the IVP

\[
L[y] = ay'' + by' + cy = g, \quad y(0) = y_0, \quad y'(0) = y_1
\]

is

\[
y(t) = (h * g)(t) + y_k(t) = \int_0^t h(t - v)g(v) \, dv + y_k(t).
\]

Here \(h \) is the impulse response function and \(y_k \) is the unique solution to \(L[y] = 0, \quad y(0) = y_0, \quad y'(0) = y_1 \).

Hand Examples

405/1

Use the Convolution Theorem to obtain a formula for the solution to

\[
y'' - 2y' + y = g(t), \quad y(0) = -1, \quad y'(0) = 1.
\]

Solution

We employ the usual 4-step procedure, using the Convolution Theorem in Step 4.

1. Take the Laplace transform of each side of the DE.

\[
(s^2Y(s) - s y(0) - y'(0)) - 2(sY(s) - y(0)) + Y(s) = G(s)
\]

2. Substitute for the initial conditions.

\[
(s^2Y(s) + s - 1) - 2(sY(s) + 1) + Y(s) = G(s)
\]

3. Solve for \(Y(s) \), the Laplace transform of \(y(t) \).

\[
\begin{align*}
(s^2 - 2s + 1)Y(s) &= G(s) - s + 3 \\
Y(s) &= \frac{G(s) - s + 3}{(s - 1)^2} \\
&= \frac{G(s)}{(s - 1)^2} + \frac{a}{(s - 1)} + \frac{b}{(s - 1)^2}, \quad \text{via cpf}
\end{align*}
\]

4. Take the inverse Laplace transform of \(Y(s) \) to obtain \(y(t) \).

\[
y(t) = 2te^t - e^t + (te^t * g) = 2te^t - e^t + \int_0^t (t - v)e^{t-v} g(v) \, dv.
\]

405/5

Use the Convolution Theorem to find \(\mathcal{L}^{-1}\left\{\frac{1}{s(s^2 + 1)}\right\} \).
Solution

We have
\[L^{-1} \left\{ \left(\frac{1}{s} \right) \left(\frac{1}{s^2 + 1} \right) \right\} = 1 * \sin(t) = \int_0^t 1 \sin(v) \, dv = 1 - \cos t. \]

405/14

Find the Laplace transform of \(f(t) = \int_0^t \sin(t - v) \cdot e^v \, dv. \)

Solution

Apply the Convolution Theorem.
\[\mathcal{L} \{ \sin t * e^t \} = \left(\frac{1}{s^2 + 1} \right) \left(\frac{1}{s - 1} \right) = \frac{1}{(s - 1)(s^2 + 1)} \]

406/19

Solve the integral equation \(y(t) + \int_0^t (t - v)^2 y(v) \, dv = t^3 + 3. \)

Solution

1. Take the Laplace transform of each side of the equation.
\[Y(s) + \frac{2}{s^2} Y(s) = \frac{6}{s^3} + \frac{3}{s} \]

2. (There are NO initial conditions. Skip this step!)

3. Solve for \(Y(s) \), the Laplace transform of \(y(t) \).
\[\begin{align*}
Y(s) &= \frac{6}{s^3} + \frac{3}{s} \\
\frac{s^3 + 2}{s^3} Y(s) &= \frac{3s^3 + 6}{s^4} = \frac{3(s^3 + 2)}{s^4} \\
\frac{3}{s^4} Y(s) &= \frac{3}{s} \\
Y(s) &= \frac{3}{s} \\
Y(s) &= \frac{3}{s}
\end{align*} \]

4. Take the inverse Laplace transform of \(Y(s) \) to obtain \(y(t) \).
\[y(t) = 3 \]

406/22

Solve the integro-differential equation
\[y'(t) - 2 \int_0^t e^{t-v} y(v) \, dv = t, \quad y(0) = 2. \]

Solution

1. Take the Laplace transform of each side of the equation.
\[(sY(s) - y(0)) - 2 \frac{1}{s-1} Y(s) = \frac{1}{s^2} \]

2. Substitute for the initial conditions.
\[sY(s) - 2 - 2 \frac{1}{s-1} Y(s) = \frac{1}{s^2} \]

3. Solve for \(Y(s) \), the Laplace transform of \(y(t) \).
\[\begin{align*}
\left(\frac{s - 2}{s - 1} \right) Y(s) &= \frac{1}{s^2} + 2 \\
\frac{s^2 - s - 2}{s - 1} Y(s) &= \frac{2s^2 + 1}{s^2} \\
Y(s) &= \frac{(2s^2 + 1)(s - 1)}{s^2(s^2 - s - 2)} \\
Y(s) &= \frac{a}{s} + \frac{b}{s^2} + \frac{c}{s + 1} + \frac{d}{s - 2} \\
Y(s) &= \frac{-3}{s} + \frac{1}{s^2} + \frac{2}{s + 1} + \frac{3}{s - 2}, \quad \text{via \(\text{cpf} \)}
\end{align*} \]

4. Take the inverse Laplace transform of \(Y(s) \) to obtain \(y(t) \).
\[y(t) = -3 + \frac{1}{2} t + 2e^{-t} + \frac{3}{4} e^{2t} \]

406/25

A linear system is governed by the initial value problem
\[L[y] = y'' - y' - 6y = g(t), \quad y(0) = 1, \quad y'(0) = 8 \quad(*) \]

- Find the transfer function \(H(s) \) for the system.
- Compute the impulse response function \(h(t) \).
- Solve \(L[y] = 0, \; y(0) = 1, \; y'(0) = 8 \).
- Give a formula for the solution to the IVP (*)

Solution

- The transfer function is
\[H(s) = \frac{1}{s^2 - s - 6} = \left(\frac{1}{s + 2} \right) \left(\frac{1}{s - 3} \right). \]

- The impulse response function is
\[h(t) = \mathcal{L}^{-1} \{ H(s) \} = e^{-2t} \cdot e^{3t} = \int_0^t e^{-2(t-v)} e^{3v} \, dv = e^{3t} - e^{-2t}. \]
- Solve $L[y] = y'' - y' - 6y = 0$, $y(0) = 1$, $y'(0) = 8$, using (say) Chapter 4 techniques. The characteristic equation, $0 = r^2 - r - 6 = (r + 2)(r - 3)$, has roots $r = -2, 3$. A general solution of $L[y] = 0$ is $y_h = c_1 e^{-2t} + c_2 e^{3t}$. Its derivative is $y'_h = -2c_1 e^{-2t} + 3c_2 e^{3t}$. Substituting the ICs gives $c_1 + c_2 = 1$ and $-2c_1 + 3c_2 = 8$, or $\begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \mathbf{c} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$, whence $\mathbf{c} = [c_1; c_2] = [-1; 2]$. Hence the unique solution of $L[y] = 0$ satisfying the ICs is $y_k = 2e^{3t} - e^{-2t}$.

- Via the last theorem in the summary, the solution of (*) is

$$y(t) = (h * g)(t) + y_k(t) = 2e^{3t} - e^{-2t} + \int_0^t \frac{1}{5} \left(e^{3(t-v)} - e^{-2(t-v)} \right) g(v) \, dv$$