Maple Lab, Week 29

Far-Out Integrals II

Based on suggestions by M. L. Platt, CASE Newsletter #28, April 1997

References: Handout for Lab 21 (Far-Out Integrals I);
Improper integrals: Stewart Sec. 7.9;
Infinite series: Stewart Chap. 10

Theme: We continue our investigation of \(I \equiv \int_{0}^{\infty} \frac{\sin x}{x} \, dx \).

Exercises: 5. How do we know that the improper integral \(I \) is convergent? Study the Comparison Theorem for Integrals, Stewart pp. 493–494. Although Stewart never gets around to saying so, the series theorem on p. 635 has an analogue for improper integrals:

If \(\int_{a}^{\infty} |f(x)| \, dx \) converges, then \(\int_{a}^{\infty} f(x) \, dx \) converges.

Therefore, the condition \(f(x) \geq g(x) \geq 0 \) in the comparison theorem can be replaced by \(f(x) \geq |g(x)| \).

(A) Can you apply the comparison theorem directly to the formula above for \(I \)? (Why not?)

(B) Integrate by parts to get an integral to which the comparison theorem applies. Hint:

\[
\int_{0}^{\infty} f(x) \, dx = \int_{0}^{\pi} f(x) \, dx + \int_{\pi}^{\infty} f(x) \, dx.
\]

6. Define \(a_k = \int_{k\pi}^{(k+1)\pi} \frac{\sin x}{x} \, dx \), and consider \(S = \sum_{k=0}^{\infty} a_k \).

(A) Prove that the series \(S \) converges, and that the sum equals \(I \).

(B) Write a Maple procedure to evaluate \(a_k \) numerically for any given \(k \geq 1 \). (The procedure may call \texttt{simpson} from the \texttt{student} package.)

(C) Evaluate \(a_0 \) separately. (You probably already did this if you finished the extra credit Exercise 4 in Part I.)

(D) Add up enough terms in the series \(S \) to approximate \(I \) to 2 decimal places. Hint: Alternating Series Estimation Theorem, p. 632.
7 (extra credit). Get a better approximation to I with less computation, using the sequence

$$b_k = \int_{k\pi}^{(k+1)\pi} \frac{\cos x}{x^2} \, dx.$$

8 (extra credit). Is the series S absolutely convergent? After deciding, make your answer to 5(A) more precise.