Test A – Solutions

Calculators may be used for simple arithmetic operations only!

1. (15 pts.) Find a parametric representation of the plane (in \mathbb{R}^3 with coordinates (x,y,z)) whose equation is $3x - 2z = -2$.

Let’s do this by the formal row-reduction method of Chapter 2. The augmented matrix and its reduced form are

\[
\begin{pmatrix}
3 & 0 & -2 & -2 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & -\frac{2}{3} & -\frac{2}{3} \\
\end{pmatrix}.
\]

Working from the end of the variable list back to the beginning, we see that we must take

\[z = t, \quad y = s \quad \text{(arbitrary parameters)},\]

and then

\[x = \frac{2}{3} t - \frac{2}{3}.
\]

In vector form,

\[
\vec{x} = s \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} \frac{2}{3} \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ 0 \\ 0 \end{pmatrix}.
\]

It should be noted that there are other correct answers, such as

\[
\vec{x} = s \begin{pmatrix} 1 \\ 0 \\ \frac{3}{2} \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]

Also, there are other ways of presenting an answer, such as

\[
\vec{x} = \begin{pmatrix} \frac{2}{3}(t-1) \\ s \\ t \end{pmatrix}.
\]

Remarks: The answer to a problem like this is easily checked: The constant term must by itself satisfy the equation, since it corresponds to $s = t = 0$. The vectors multiplied by s and t must satisfy the corresponding homogeneous equation, $3x - 2z = 0$. Unfortunately, passing these tests does not guarantee that your solution is complete: The main lesson of this problem is the necessity of including the term proportional to $(0,1,0)$ (or saying something about what the coordinate y does!). If you leave out that term, you have constructed just a line, not a parametrized plane.
2. (15 pts.) An A2X30 module contains 1000 cubic inches of steel and 20 cubic inches of titanium. A B62W subassembly contains 10 cubic inches of steel and 1 cubic inch of titanium. A supertanker is built from 10 A2X30s and 8 B62Ws. A minesweeper is built from 5 A2X30s and 3 B62Ws.

Organize these facts into matrices, and find the matrix that should be used to calculate the quantities of metals needed to make \(k \) tankers and \(m \) minesweepers.

Let \(A, B, s, t \) have the obvious meanings. Translating the sentences into equations, we have

\[
\begin{pmatrix}
 s \\
 t
\end{pmatrix} = \begin{pmatrix} 1000 & 10 \\ 20 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} \quad \text{(let's call this matrix } M \text{)},
\]

\[
\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 10 & 5 \\ 8 & 3 \end{pmatrix} \begin{pmatrix} k \\ m \end{pmatrix} \quad \text{(let's call this matrix } N \text{)}.
\]

(Be sure that your matrices express the correct relationships, calculating the required inputs from the desired outputs. For example, the top line of the first matrix equation expresses the formula \(s = 1000A + 10B \), saying that we need 1000 units of steel for each A module and 10 units of steel for each B module.) Therefore,

\[
\begin{pmatrix}
 s \\
 t
\end{pmatrix} = MN \begin{pmatrix} k \\ m \end{pmatrix},
\]

where

\[
MN = \begin{pmatrix} 1000 & 10 \\ 20 & 1 \end{pmatrix} \begin{pmatrix} 10 & 5 \\ 8 & 3 \end{pmatrix} = \begin{pmatrix} 10080 & 5030 \\ 208 & 103 \end{pmatrix}.
\]

3. (20 pts.) Atoms near the point \(\vec{x}_0 \equiv \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \) sit in an electric field \(\vec{E} = \begin{pmatrix} x^2 - y \\ x^2 + y^2 \\ z^3 \end{pmatrix} \).

(a) Find the first-order (best affine) approximation to \(\vec{E}(\vec{x}) \) for \(\vec{x} \) near \(\vec{x}_0 \).

The Jacobian matrix is

\[
\frac{d\vec{E}}{d\vec{x}} = \begin{pmatrix}
 2x & -1 & 0 \\
 2x & 2y & 0 \\
 0 & 0 & 3z^2
\end{pmatrix} = \begin{pmatrix}
 6 & -1 & 0 \\
 6 & 4 & 0 \\
 0 & 0 & 3
\end{pmatrix} \text{ at } \vec{x}_0.
\]

Therefore,

\[
\vec{E}(\vec{x}) \approx \vec{E}(\vec{x}_0) + \frac{d\vec{E}}{d\vec{x}}(\vec{x} - \vec{x}_0) = \begin{pmatrix} 7 \\ 13 \\ 1 \end{pmatrix} + \begin{pmatrix} 6 & -1 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x - 3 \\ y - 2 \\ z - 1 \end{pmatrix}.
\]
(b) Suppose that the index of refraction of a crystal depends on the electric field according to the law

\[n = 1 + 0.01E_x^2 + 0.04E_y^2 + 0.02E_z^2. \]

Use the multidimensional chain rule to find \(\frac{\partial n}{\partial y} \) at \(\vec{x}_0 \).

Method 1:

\[\nabla n = \frac{dn}{dE_x} \frac{d\vec{E}}{d\vec{x}} = (0.02E_x, 0.08E_y, 0.04E_z) \bigg|_{\vec{x}_0} \frac{d\vec{E}}{d\vec{x}} = (0.14, 1.04, 0.04) \begin{pmatrix} 6 & -1 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} = (\ast, 4.02, \ast), \]

where the numbers \(\ast \) are irrelevant and \(4.02 = \frac{\partial n}{\partial y} \).

Method 2: (This is really the same method, but in “classical” partial-derivative notation instead of vectors and matrices.)

\[
\frac{\partial n}{\partial y} = \frac{\partial n}{\partial E_x} \frac{\partial E_x}{\partial y} + \frac{\partial n}{\partial E_y} \frac{\partial E_y}{\partial y} + \frac{\partial n}{\partial E_z} \frac{\partial E_z}{\partial y} = 0.02E_x (-1) + 0.08E_y (2y) + 0.04E_z (0).
\]

When all this is evaluated at \((x, y, z) = (3, 2, 1) \), we again get 4.02.

4. (15 pts.) Let’s define a mapping \(Q \) of the function space \(C^1(0, \infty) \) into the function space \(C(0, \infty) \) by

\[Q(f)(t) \equiv \frac{df}{dt} + (2t + 1)f(t)^2. \]

(Here \(t \) is the independent variable of the functions in \(C^1(0, \infty) \), and \(f \) is a generic element of \(C^1(0, \infty) \).) Is \(Q \) linear, affine, or nonlinear? Justify your answer.

Nonlinear. It is enough to show that either of the linearity conditions is violated; for instance,

\[Q(2f) = 2 \frac{df}{dt} + 4(2t + 1)f^2 \neq 2 \frac{df}{dt} + 2(2t + 1)f^2 = 2Q(f). \]

5. (15 pts.)

(a) Solve the system \(\begin{cases} x + y = 2, \\ x - by = 0 \end{cases} \) for \(x \) and \(y \) (with \(b \) as a parameter).

Set up an augmented matrix and reduce:

\[
\begin{pmatrix} 1 & 1 & 2 \\ 1 & -b & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & -b - 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 - \frac{2}{b+1} \\ 0 & 1 & \frac{2}{b+1} \end{pmatrix}.
\]

We note that the last step assumes \(b + 1 \neq 0 \). Therefore, if \(b \neq -1 \), we have

\[x = 2 - \frac{2}{b + 1} = \frac{2b}{b + 1}, \quad y = \frac{2}{b + 1}. \]
(b) Point out any values of b that are “special” with regard to existence and uniqueness of solutions. (Explain.)

If $b = -1$, the equations are inconsistent; no solutions exist.

6. (20 pts.) Find the inverse (if it exists) of the matrix $M = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & -2 \\ 1 & 0 & 0 \end{pmatrix}$.

Therefore,

$$M^{-1} = \frac{1}{3} \begin{pmatrix} -2 & -1 & 5 \\ 4 & 2 & -7 \\ 1 & -1 & -1 \end{pmatrix}.$$