Example Sheet 10

1. If \(g \) is the inverse function of \(f(x) = \ln x + \tan^{-1} x \), find \(g'(\pi/4) \).

2. Study the second half of Page 268 in the text (the subsection entitled “The number \(e \) as a limit”). In particular, understand how the important formulae (6) and (7) on that page are derived.

3. Find the slope of the tangent to the curve \(y = x + \arctan y \) at the point \((1 - \pi/4, 1)\).

4. Evaluate:
 (i) \(\sin(2 \sin^{-1}(t)) \), \(-1 \leq t \leq 1\).
 (ii) \(\sin(2 \cos^{-1}(t)) \), \(-1 \leq t \leq 1\).
 (iii) \(\sin \left[\sin^{-1}(u) + \sin^{-1}(v) \right] \), \(-1 \leq u, v \leq 1\).

5. (from one of my old final exams) Suppose that \(x \) is a number in the open interval \((\pi/2, 3\pi/2)\). What is \(\tan^{-1}(\tan x) \)?

6. Prove that for \(uv \neq 1 \),
 \[
 \tan^{-1} u + \tan^{-1} v = \tan^{-1} \left[\frac{u + v}{1 - uv} \right],
 \]
 if the left-hand side (of the equation above) lies between \(-\pi/2\) and \(\pi/2\). (Recall and use the trigonometric identity
 \[
 \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.\]

7. Prove the following identities:
 (i) \(\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y \)
 (ii) \(\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y \)
 (iii) \((\cosh x + \sinh x)^n = \cosh(nx) + \sinh(nx) \) for every real number \(x \) and every positive integer \(n \).

8. Let \(C \) denote the curve \(y = \cosh(x) \), \(-\infty < x < \infty\), and let \(\alpha \) be a fixed real number. Find the point on \(C \) where the slope of the tangent is \(\alpha \).

9. If \(x = \ln(\sec \theta + \tan \theta) \), show that \(\cosh x = \sec \theta \).