1. Let \(f(x) = \sqrt{1 + x^2} \) and let \(c \) be a fixed (but arbitrary) real number. Compute \(f'(c) \) using the definition of the derivative.

2. Suppose that \(f \) is a differentiable function. Evaluate each of the following limits:

\[
\lim_{h \to 0} \frac{f(a + 2h) - f(a)}{h} \quad \text{and} \quad \lim_{h \to 0} \frac{f(a + h) - f(a - h)}{h}.
\]

3. Suppose that \(F, G, \) and \(H \) are differentiable functions. Show that

\[
(FGH)' = F'GH + FG'H + FGH'.
\]

(Begin by putting \(FG = U \); then use the product rule twice.)

4. Let \(n \) be a fixed (but arbitrary) positive integer, and define \(f(x) := x^n|x| \).

(i) Sketch the graph of \(y = f(x) \) for \(n = 1, 2, 3 \).

(ii) Use the definition of the derivative to show that \(f'(0) = 0 \).

(iii) Find \(f'(c) \) for \(c \neq 0 \). (Consider two cases: \(c > 0 \) and \(c < 0 \).)

(iv) Use your findings above to give a general formula for \(f'(c) \), \(c \) a real number.

5. Where is the function \(g(x) = |x - 1| + |x - 2| \) differentiable? Give a formula for \(g' \) and sketch the graphs of \(g \) and \(g' \).

6. For what values of \(a \) and \(b \) is the line \(2x + y = b \) tangent to the parabola \(y = ax^2 \) when \(x = 2 \)?

7. (taken from Basic Analysis: Japanese Grade 11) Two curves \(y = x^3 + ax \) and \(y = x^2 + bx + c \) pass through the point \((1, 2)\) and have a common tangent line at this point. Find the values of the constants \(a, b, \) and \(c \).

8. Suppose that \(A \) is a fixed positive number.

(a) Find an equation for each of the two tangent lines to the curve \(y = x^2 \) which pass through the point \((0, -A^2)\).

(b) Find the value of \(A \) for which the aforesaid tangents are perpendicular to each other.

9. Let \(C \) denote the graph of the parabola \(y = 1 - x^2 \). Suppose that \(a \) is a (fixed) positive number, and let \(A \) denote the point \((0, 1 + a)\) on the \(y \)-axis. Suppose that the two tangent lines to \(C \) which pass through \(A \) touch \(C \) at the points \(P \) and \(Q \).

(i) Find the co-ordinates of \(P \) and \(Q \) (in terms of \(a \)).

(ii) Find the value of \(a \) such that the triangle formed by \(A, P, \) and \(Q \) is equilateral.
10. Suppose that \(f \) is differentiable at 0,

\[
\lim_{x \to 0} \frac{f(x)}{x} = 4, \quad \text{and} \quad \lim_{x \to 0} \frac{g(x)}{x} = 2.
\]

(i) Find \(f(0) \).
(ii) Find \(f'(0) \).
(iii) Find \(\lim_{x \to 0} g(x) f(x) \).

11. Suppose that \(f \) is a function that satisfies the equation

\[
f(x + y) = f(x) + f(y) + x^2 y + xy^2
\]

for every pair of real numbers \(x \) and \(y \). Assume further that \(\lim_{x \to 0} \frac{f(x)}{x} = 1 \). Find (i) \(f(0) \), (ii) \(f'(0) \), and (iii) \(f'(x) \).