1. Let
 \[f(x) := \begin{cases} x^2 \sin \left(1/x\right), & \text{if } x \neq 0; \\ 0, & \text{if } x = 0. \end{cases} \]
 (i) Recall from lecture that \(f'(0) = 0 \).
 (ii) Find \(f'(x) \) for every \(x \neq 0 \).
 (iii) What is \(\lim_{x \to 0} f'(x) \)?
 (iv) Explain how the finding in (iii) can be reconciled with (i).

2. Find all points on the curve \(y = (\cos x)/(2 + \sin x) \) at which the tangent is horizontal.

3. Suppose that \(f \) is a differentiable function, and \(b \) and \(m \) are constants. Define \(g(x) = f(b + mx) + f(b - mx) \). Find \(g'(x) \).

4. Suppose that \(f \) is a differentiable function and \(g(t) = [f(sin t)]^2 \). Find \(g'(t) \).

5. Suppose that \(n \) is a fixed positive integer. Show that the following identities hold:
 \[
 \frac{d}{dx} \left[\sin^n(x) \cos(nx) \right] = n \sin^{n-1}(x) \cos((n+1)x) \\
 \frac{d}{dx} \left[\cos^n(x) \cos(nx) \right] = -n \cos^{n-1}(x) \sin((n+1)x)
 \]

6. (from an old 151 (common) exam) Suppose that \(f \) is a differentiable function. It is known that the curve \(y = f(x) \) has exactly one horizontal tangent, corresponding to \(x = 2 \). Define \(g(x) = f(x^2 + x) \). Find all values of \(x \) for which the graph of \(g \) has horizontal tangents.

7. Suppose that \(f \) is a differentiable function such that \(f(1) = 1, f(2) = 2, f'(1) = 1, f'(2) = 2, \) and \(f'(3) = 3 \). If \(g(x) = f(x^3 + f(x^2 + f(x))) \), find \(g'(x) \) and hence \(g'(1) \).