1. Suppose that A is an $m \times n$ matrix whose rank is n. Show that if $x \neq 0$ and $y = Ax$, then $y \neq 0$.

2. Suppose that $A \in \mathbb{R}^{m \times n}$. Prove the following statements:
 (i) If B is a nonsingular $m \times m$ matrix, then $N(BA) = N(A)$, and rank$(BA) = \text{rank}(A)$.
 (ii) If C is a nonsingular $n \times n$ matrix, then rank$(AC) = \text{rank}(A)$.

3. Suppose that A and B are $n \times n$ matrices.
 (i) Prove that $AB = O_n$ if and only if $\text{CS}(B) \subseteq N(A)$.
 (ii) Assume that $AB = O_n$. Use (i) to show that $\text{rank}(A) + \text{rank}(B) \leq n$.

4. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and let x_0 be a solution of the system $Ax = b$, that is, $Ax_0 = b$. Prove the following statements:
 (i) A vector $y \in \mathbb{R}^n$ is a solution of the system $Ax = b$ if and only if y can be expressed in the form $y = x_0 + z$, for some $z \in N(A)$.
 (ii) If $N(A) = \{0\}$, then the solution x_0 is unique.

5. Suppose that x and y are nonzero vectors in \mathbb{R}^m and \mathbb{R}^n, respectively, and define the $m \times n$ matrix $A := xy^T$.
 (i) Show that $\{x\}$ is a basis for $\text{CS}(A)$, and that $\{y^T\}$ is a basis for $\text{RS}(A)$.
 (ii) Compute the dimension of $N(A)$.

6. Suppose that $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times r}$, and that $C := AB$. Prove the following statements:
 (i) $\text{CS}(C) \subseteq \text{CS}(A)$.
 (ii) $\text{RS}(C) \subseteq \text{RS}(B)$.
 (iii) rank$(C) \leq \text{min}\{\text{rank}(A), \text{rank}(B)\}$.
 (iv) If A and B both have linearly independent column vectors, then the column vectors of C are also linearly independent.
 (v) Apply (iv) to C^T and show that, if A and B have linearly independent row vectors, then the row vectors of C are also linearly independent.
 (vi) If the columns of B are linearly dependent, then the columns of C are also linearly dependent.
 (vii) If the rows of A are linearly dependent, then so are the rows of C.

Definition. Suppose that A is an $m \times n$ matrix. We say that A has a left inverse if there exists an $n \times m$ matrix L such that $LA = I_n$. We say that A has a right inverse if there exists an $n \times m$ matrix R such that $AR = I_m$.

7. (i) Suppose that $A \in \mathbb{R}^{m \times n}$. Prove that the A has a right inverse if and only if $\text{CS}(A) = \mathbb{R}^m$.
 (ii) Suppose that $A \in \mathbb{R}^{m \times n}$, and that A has a right inverse. Use (i) to show that $m \leq n$.

8. Suppose that $A \in \mathbb{R}^{m \times n}$. Prove that the following statements are equivalent:
 (a) A has a left inverse.
 (b) The columns of A are linearly independent.