Example Sheet 6

1. Suppose $X := \{x_1, \ldots, x_{n+1}\}$ is a set of distinct real numbers. Let P_n denote the (real) vector space of all polynomials of degree at most n with real coefficients; that is,

$$P_n := \left\{ f(x) = \sum_{k=0}^{n} a_k x^k : a_k \in \mathbb{R} \quad \forall \ 0 \leq k \leq n \right\}.$$

(i) Suppose $f \in P_n$ and $f(x_j) = 0$ for every $1 \leq j \leq n+1$. Show that f is identically zero. (Use Question 9 from Example Sheet 2.)

(ii) Let X and P_n be as above; define

$$\langle f, g \rangle_X := \sum_{j=1}^{n+1} f(x_j)g(x_j), \quad f, g \in P_n.$$

Show that $\langle \cdot, \cdot \rangle_X$ is an inner product on P_n.

(iii) Recall that the set $B := \{1, x, x^2\}$ is the standard monomial basis for P_2. Let $X = \{-1, 0, 1\}$. Apply the Gram-Schmidt procedure to the set B and obtain an orthogonal basis for P_2 with respect to the inner product $\langle \cdot, \cdot \rangle_X$.

2. A function f from a normed linear space $(X, \| \cdot \|_X)$ into a normed linear space $(Y, \| \cdot \|_Y)$ is said to be Lipschitz if there exists a constant M such that

$$\|f(u) - f(v)\|_Y \leq M \|u - v\|_X, \quad \forall u, v \in X.$$

Prove that every linear transformation from $\ell^\infty_n(\mathbb{C})$ into itself is Lipschitz.

3. Suppose $(V, \langle \cdot, \cdot \rangle)$ is an inner product space, and let $L : V \rightarrow V$ be a linear transformation. The adjoint of L, denoted by L^*, is a map from V to V which is defined through the formula

$$\langle L^*(x), y \rangle = \langle x, L(y) \rangle, \quad x, y \in V.$$

(i) Show that the adjoint of L is unique.

(ii) Prove that L^* is a linear transformation.

4. Let $V = \mathbb{C}^n$, equipped with the standard inner product. Let $L : V \rightarrow V$ be a linear transformation. Prove the following statement: If A is the matrix of L (with respect to the standard basis of V), then the matrix of L^* (with respect to the standard basis of V) is A^* (also denoted by A^H in lecture).

5. Suppose $(V, \langle \cdot, \cdot \rangle)$ is a complex inner product space, and let $\| \cdot \|$ denote the norm induced by the inner product.

(i) Prove the polarization identity:

$$Re\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right), \quad \forall x, y \in V.$$

(ii) Show that

$$Re\langle x, y \rangle = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right), \quad \forall x, y \in V.$$
(iii) Prove:
\[\| x + y \| \| x - y \| \leq \| x \|^2 + \| y \|^2, \quad \forall x, y \in V. \]

6. Let \(C(T) \) denote the set of all continuous, real-valued, 2\(\pi \)-periodic functions on the real line, that is, the set of all functions \(f : (-\infty, \infty) \to (-\infty, \infty) \) which are continuous on \((-\infty, \infty) \), and satisfy the identity \(f(x + 2\pi) = f(x) \) for every real number \(x \).
 (i) Verify that \(C(T) \) is a subspace of (the familiar real vector space) \(C(-\infty, \infty) \).
Define
\[\langle f, g \rangle := \int_{T} f(x)g(x) \, dx, \quad f, g \in C(T). \] (1)

(ii) Verify that \(\langle , \rangle \) given above is a (real) inner product on \(C(T) \).
Suppose \(n \geq 1 \) is a positive integer, and define
\[S_n := \{ 1, \cos(x), \ldots, \cos(nx), \sin(x), \ldots, \sin(nx) \}, \]
and let
\[T_n := \left\{ \alpha_0 + \sum_{k=1}^{n} [\alpha_k \cos(kx) + \beta_k \sin(kx)] : \alpha_k, \beta_k \in \mathbb{R} \right\}. \]
(iii) Verify that \(T_n \) is a subspace of \(C(T) \). (\(T_n \) is called the space of trigonometric polynomials of degree \(n \).)
(iv) Show that \(S_n \) is an orthogonal basis for \(T_n \) (the orthogonality here is with respect to the inner product defined in equation (1) above).
Given \(f \in C(T) \), define the Fourier coefficients of \(f \) as follows:
\[a_k(f) := \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos(kx) \, dx, \quad 0 \leq k \leq n, \]
and
\[b_k(f) := \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin(kx) \, dx, \quad 1 \leq k \leq n. \]
The \(n \)-th partial sum of the Fourier series of \(f \) is defined by the following equation:
\[s_n(f, x) := \frac{a_0(f)}{2} + \sum_{k=1}^{n} [a_k(f) \cos(kx) + b_k(f) \sin(kx)], \quad n = 1, 2, \ldots. \]
(v) Show that \(s_n(f) \) enjoys the following best-approximation property:
\[\| f - s_n(f) \| = \min_{\tau \in T_n} \| f - \tau \|, \]
where \(\| \cdot \| \) is the norm induced by the inner product in (1).

7. Suppose \((V, \langle , \rangle) \) is a complex inner product space, and let \(y \) be a fixed vector in \(V \). Define
\[L_y(x) := \langle x, y \rangle, \quad x \in V. \]
(i) Show that \(L_y \) is a linear functional on \(V \) (recall: a linear functional is a linear transformation from \(V \) to \(\mathbb{C} \)).
(ii) Consider V as a normed linear space, equipped with the norm induced by the inner product. Show that the function L_y is Lipschitz (recall the definition of a Lipschitz function from Example 2 above).

(iii) Suppose now that V is finite dimensional. Let L be a (generic) linear functional on V. Prove that there exists a vector y in V such that $L = L_y$; that is, there exists $y \in V$ such that $L(x) = \langle x, y \rangle$ for every $x \in V$.

Remark: Example 7(iii) above is the finite-dimensional version of the Riesz Representation Theorem for Hilbert spaces.