This next result, a celebrated one in the theory of Fourier series, is the centrepiece of this section.

Theorem 4.6.14. (Fejér) If \(F \in C(T) \), then

\[
\lim_{N \to \infty} \sigma_N[F; t] = F(t), \quad -\pi \leq t \leq \pi,
\]

the convergence being uniform on \([-\pi, \pi]\).

Proof. Let \(\Delta \) be the number given by Proposition 4.6.1(iii), so that \(|F(t)| \leq \Delta\) for every real number \(t \). Given \(\epsilon > 0 \), the second part of the aforementioned proposition supplies a positive number \(\delta \), depending on \(F \) and \(\epsilon \), such that

\[
|F(s) - F(t)| < \frac{\epsilon}{2} \quad \text{whenever } -2\pi \leq s, t \leq 2\pi \quad \text{and} \quad |s - t| < \delta.
\]

Choose a positive integer \(N_0 \) so large that

\[
\frac{\Delta}{\pi} \int_{\delta \leq |t| \leq \pi} |K_N(t)| \, dt < \frac{\epsilon}{2} \quad \text{for every } N \geq N_0;
\]

that such an \(N_0 \) exists is guaranteed by Proposition 4.6.13(iii).

Let \(t \) be any fixed (but arbitrarily chosen) point in \([-\pi, \pi]\), and let \(N \geq N_0 \). Proposition 4.6.11(ii), Theorem 4.6.8(ii), and Proposition 4.6.13(i) allow us to write

\[
\begin{aligned}
\sigma_N[F; t] - F(t) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\tau) F(t - \tau) \, d\tau - \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\tau) F(t) \, d\tau \\
&= \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\tau) [F(t - \tau) - F(t)] \, d\tau \\
&= \frac{1}{2\pi} \int_{|\tau| < \delta} K_N(\tau) [F(t - \tau) - F(t)] \, d\tau + \frac{1}{2\pi} \int_{\delta \leq |\tau| \leq \pi} K_N(\tau) [F(t - \tau) - F(t)] \, d\tau \\
&=: I_1 + I_2.
\end{aligned}
\]

As \(t - \tau \) and \(\tau \) lie in the interval \([-2\pi, 2\pi]\) whenever \(t, \tau \in [-\pi, \pi] \), and \(|t - \tau - t| = |\tau|\), we find, via (4.6.8), that \(|F(t - \tau) - F(t)| < \epsilon/2\) whenever \(|\tau| < \delta\). Combining this with Theorem 4.6.2(ii) and parts (i) and (ii) of Proposition 4.6.13, we obtain

\[
|I_1| \leq \frac{1}{2\pi} \int_{|\tau| < \delta} K_N(\tau) |F(t - \tau) - F(t)| \, d\tau < \frac{(\epsilon/2)}{2\pi} \int_{|\tau| < \delta} K_N(\tau) \, d\tau < \frac{(\epsilon/2)}{2\pi} \int_{-\pi}^{\pi} K_N(\tau) \, d\tau = \frac{\epsilon}{2}.
\]

As for \(I_2 \), the triangle inequality asserts that \(|F(t - \tau) - F(\tau)| \leq |F(t - \tau)| + |F(\tau)| \leq 2\Delta\) for every \(t \) and \(\tau \). Therefore Theorem 4.6.2(ii) implies that

\[
|I_2| \leq \frac{1}{2\pi} \int_{\delta \leq |\tau| \leq \pi} 2\Delta K_N(\tau) \, d\tau = \frac{\Delta}{\pi} \int_{\delta \leq |\tau| \leq \pi} K_N(\tau) \, d\tau < \frac{\epsilon}{2},
\]

the final inequality coming from (4.6.9).

Putting (4.6.11) and (4.6.12) together with (4.6.10), one infers that

\[
|\sigma_N[F; t] - F(t)| < \epsilon \quad \text{for every } N \geq N_0.
\]
Remembering that the choice of \(N_0 \) was independent of \(t \), we conclude that the estimate (4.6.13) holds uniformly in \(t \), and this completes the proof.

An immediate corollary of the preceding theorem is the following:

Corollary 4.6.15. Given \(F \in C(T) \) and \(\epsilon > 0 \), there is a trigonometric polynomial \(p \) such that
\[
|F(t) - p(t)| < \epsilon \text{ for every } t \in [-\pi, \pi].
\]

Proof. Choose \(p = \sigma_N[F] \) for sufficiently large \(N \).

Fejér’s Theorem also allows us to deduce the following noteworthy facts about Fourier series of continuous functions.

Corollary 4.6.16. Suppose that \(F \in C(T) \).

(i) If \(\lim_{N \to \infty} S_N[F; t_0] = \alpha \) for some \(t_0 \in [-\pi, \pi] \), then \(\alpha = F(t_0) \).

(ii) If \(\lim_{N \to \infty} S_N[F; t] = 0 \) for every \(t \in [-\pi, \pi] \), then \(F[n] = 0 \) for every integer \(n \).

Proof. EXERCISE.

Three important consequences of Fejér’s Theorem will be presented next. We shall begin with a preludial lemma.

Lemma 4.6.17. Suppose that \(F \) and \(G \) belong to \(C(T) \), and let \(c_1 \) and \(c_2 \) be complex numbers. If \(H = c_1 F + c_2 G \), then \(H[n] = c_1 F[n] + c_2 G[n] \) for every integer \(n \).

Proof. EXERCISE.

The following result implies that a function in \(C(T) \) is completely determined by its sequence of Fourier coefficients.

Theorem 4.6.18. (Uniqueness Theorem) Suppose that \(F \) and \(G \) belong to \(C(T) \), and that \(F[n] = G[n] \) for every integer \(n \). Then \(F = G \).

Proof. Let \(H := F - G; \) so \(H \in C(T) \) and \(H[n] = 0 \) for every \(n \), the latter assertion being a consequence of Lemma 4.6.17. Therefore Proposition 4.6.11(ii) shows that \(\sigma_N[H; t] = 0 \) for every \(N \) and \(t \), so \(H = 0 \) by Fejér’s Theorem.

The forthcoming discussion will involve the following notions: a sequence \(\{ z_n : n \in \mathbb{Z} \} \) of complex numbers is said to be bounded if there is a number \(A \) such that \(|z_n| \leq A \) for every integer \(n \). We say that \(\lim_{|n| \to \infty} z_n = 0 \) if \(\lim_{|n| \to \infty} |z_n| = 0 \); quantitatively, given \(\epsilon > 0 \) there is a positive integer \(N \) such that \(|z_n| < \epsilon \) whenever \(|n| > N \). The reader will convince herself (preferably by supplying a proof) of the following: if \(\lim_{|n| \to \infty} z_n = 0 \), then \(\{ z_n : n \in \mathbb{Z} \} \) is a bounded sequence.

We now turn our attention briefly to the behaviour of the Fourier coefficients of a continuous function. Suppose that \(F \in C(T) \), and let \(\Delta := \sup \{|F(t)| : t \in \mathbb{R} \} \). If \(n \) is any integer, then Theorem 4.6.2(ii) and the fact that \(|e^{i\theta}| = 1 \) for every real number \(\theta \) imply the relations
\[
|F[n]| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} F(t)e^{-int} \, dt \right| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(t)| \, dt \leq \frac{\Delta}{2\pi} \int_{-\pi}^{\pi} \, dt = \Delta;
\]
in particular, the sequence \(\{ F[n] : n \in \mathbb{Z} \} \) is bounded. Fejér’s Theorem allows us to establish a stronger result:
Theorem 4.6.19. *(Riemann–Lebesgue Lemma)* If $F \in C(T)$, then $\lim_{|n| \to \infty} F[n] = 0$.

Proof. Let $\epsilon > 0$ be given. Corollary 4.6.15 provides a trigonometric polynomial $p(t) = \sum_{k=-N}^{N} c_k e^{ikt}$ such that $|F(t) - p(t)| < \epsilon$ for every $t \in [-\pi, \pi]$. Let n be an integer whose modulus exceeds N. Then $k - n$ is a nonzero integer for every integer k between $-N$ and N, so

$$
\int_{-\pi}^{\pi} p(t)e^{-i\pi t} dt = \sum_{k=-N}^{N} c_k \int_{-\pi}^{\pi} e^{i(k-n)t} dt = 0
$$

by (4.6.7). Ergo

$$
|F[n]| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(t) - p(t)|e^{-i\pi t} |dt \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(t) - p(t)| dt \leq \frac{\epsilon}{2\pi} \int_{-\pi}^{\pi} dt \leq \epsilon.
$$

Our final task will be to use Fejér’s Theorem to give another proof of the Weierstraß Polynomial Approximation Theorem (Theorem 3.9.17). We begin by laying some groundwork.

Lemma 4.6.20. Suppose that $F \in C(T)$ is real valued and even. The following hold:

(i) Every Fourier coefficient of F is a real number.

(ii) $F[-k] = F[k]$ for every positive integer k.

(iii) If N is any nonnegative integer, then $\sigma_N[F; t]$ is a polynomial of the form $\sum_{k=0}^{N} A_k \cos(kt)$, where the A_k’s are real numbers.

Proof. (i) If $n = 0$, then

$$
F[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(t) dt \in \mathbb{R}.
$$

Suppose now that $n \neq 0$. Then

$$
F[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(t)e^{-i\pi t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(t) \cos(nt) dt - \frac{i}{2\pi} \int_{-\pi}^{\pi} F(t) \sin(nt) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(t) \cos(nt) dt \in \mathbb{R},
$$

the final equation stemming from the fact that the function $t \mapsto F(t) \sin(nt)$ is odd.

(ii) This is immediate from (4.6.14) because $\cos(-kt) = \cos(kt)$.

(iii) Recall from Proposition 4.6.11(ii) that $\sigma_N[F; t] = \sum_{k=-N}^{N} \alpha_k e^{ikt}$, where

$$
\alpha_k := \left(1 - \frac{|k|}{N + 1}\right) F[k], \quad -N \leq k \leq N.
$$

So assertions (i) and (ii) of the current lemma imply that α_k is a real number for every $|k| \leq N$ and $\alpha_{-k} = \alpha_k$ for every positive integer k. Therefore

$$
\sigma_N[F; t] = \alpha_0 + \sum_{|k|=1}^{N} \alpha_k \cos(kt) + i \sum_{k=1}^{N} \alpha_k \sin(kt)
$$

$$
= \alpha_0 + \sum_{k=1}^{N} (\alpha_k + \alpha_{-k}) \cos(kt) + i \sum_{k=1}^{N} (\alpha_k - \alpha_{-k}) \sin(kt)
$$

$$
= \alpha_0 + 2 \sum_{k=1}^{N} \alpha_k \cos(kt).
$$
Our preparations are completed with the following lemma, which asserts that every trigonometric polynomial of the type encountered in the third part of the previous result is expressible as a linear combination of powers of the cosine function.

Lemma 4.6.21. Every trigonometric polynomial of the form

\[p(t) = \sum_{k=0}^{N} A_k \cos(kt), \quad A_k \in \mathbb{R}, \quad 0 \leq k \leq N, \]

admits the following representation:

\[p(t) = \sum_{k=0}^{N} B_k \cos^k t, \quad B_k \in \mathbb{R}, \quad 0 \leq k \leq N. \]

Proof. It suffices to show that, for every positive integer \(m \), the function \(\cos(mt) \) is a real linear combination of the set \(\{ \cos^l t : 0 \leq l \leq m \} \). The DeMoivre and Binomial Theorems combine to yield the identities

\[
\cos(mt) + i\sin(mt) = (\cos t + i\sin t)^m = \sum_{k=0}^{m} \binom{m}{k} i^k \sin^k t \cos^{m-k} t, \quad t \in \mathbb{R}.
\]

Comparing the real parts of the first and third terms above, one finds that

\[
\cos(mt) = \sum_{r=0}^{[m/2]} \binom{m}{2r} i^{2r} \sin^{2r} t \cos^{m-2r} t = \sum_{r=0}^{[m/2]} \binom{m}{2r} (-1)^r (1 - \cos^2 t)^r \cos^{m-2r} t, \quad t \in \mathbb{R},
\]

and the last expression is a real linear combination of the functions \(1, \cos t, \ldots, \cos^m t \).

We are now ready for Weierstraß's theorem, which will be given in two steps. The first (and key) step is the following:

Theorem 4.6.22. (Weierstraß) Suppose that \(g : [-1,1] \to \mathbb{R} \) is continuous on \([-1,1]\). Given \(\epsilon > 0 \), there is a polynomial \(s(x) = \sum_{k=0}^{N} B_k x^k, B_k \in \mathbb{R}, 0 \leq k \leq N, \) such that \(|(g(x) - s(x))| < \epsilon \) for every \(x \in [-1,1] \).

Proof. Define \(F(t) := g(\cos t) \), which is a real-valued, even function belonging to \(C(T) \). Thanks to Fejér’s Theorem, Lemma 4.6.20(iii), and Lemma 4.6.21, there is a nonnegative integer \(N \) and real numbers \(B_0, \ldots, B_N \) such that

\[
\left| g(\cos t) - \sum_{k=0}^{N} B_k \cos^k t \right| = \left| F(t) - \sum_{k=0}^{N} B_k \cos^k t \right| < \epsilon \quad \text{for every } t \in [0, \pi]. \tag{4.6.15}
\]

Putting \(x = \cos t \) and \(s(x) = \sum_{k=0}^{N} B_k x^k \), we find that (4.6.15) is equivalent to

\[|g(x) - s(x)| < \epsilon \quad \text{for every } x \in [-1,1]. \]
The general form of Weierstraß’s Theorem is derived from Theorem 4.6.22 in much the same way as Theorem 3.9.17 was deduced from Theorem 3.9.15.

Theorem 4.6.23. (Weierstraß’s Polynomial Approximation Theorem) Let \(a \) and \(b \) be a pair of fixed real numbers with \(a < b \). Suppose that \(f : [a, b] \to \mathbb{R} \) is continuous on \([a, b]\). Given \(\epsilon > 0 \), there is a polynomial \(P \) such that \(|f(y) - P(y)| < \epsilon\) for every \(y \in [a, b]\).

Proof. Define \(g(x) = f \left(a + \frac{(b-a)(x+1)}{2} \right) \), \(-1 \leq x \leq 1\). Then \(g \) is a continuous real-valued function on the interval \([-1,1]\). Accordingly, Theorem 4.6.22 supplies a polynomial \(s \) such that

\[
|f \left(a + \frac{(b-a)(x+1)}{2} \right) - s(x)| = |g(x) - s(x)| < \epsilon \quad \text{for every } x \in [-1,1]. \tag{4.6.16}
\]

Putting \(y = a + \frac{(b-a)(x+1)}{2} \) and \(P(y) := s \left(\frac{2(y-a)}{b-a} - 1 \right) \), one finds that (4.6.16) may be rewritten as

\[
|F(y) - P(y)| < \epsilon \quad \text{for every } y \in [a, b].
\]

As \(P \) is the composition of the polynomial \(s \) with the linear function \(y \mapsto \frac{2(y-a)}{b-a} - 1 \), \(P \) itself is a polynomial in the variable \(y \).