In [2]:

```
from sympy import * # You need to start by importing this symbolic package
```

Example 1 (part a): Verify $y=\mathrm{Ce}^{\wedge}(a t)$ is a solution to the ODE $d y / d t=a{ }^{*} y$. NOTE: The second part of this solution will be important for all future computer assignments!!!

In [3]:

```
t=symbols('t') # Defines t as a symbolic variable
C,a=symbols('C a') # Defines C and a as symbolic variables at the same tim
e
y=C*exp(a*t)
LHS=diff(y,t)
RHS=a*y
print('LHS =',LHS,'and RHS =',RHS) # the print command produces output and
explanatory text
```

LHS $=$ C*a*exp $\left(a^{*} t\right)$ and RHS $=C * a * \exp (a * t)$

In [4]:

```
# ************Let's actually solve the ODE using the dsolve command *******
*****
y=Function('y') # Defines y as a symbolic function
deq=diff(y(t),t)-a*y(t) # PERSONAL PREFERENCE: I like to move everything to
one side to solve EXPRESSION = 0
ysoln=dsolve(deq,y(t))
print('The solution to the ODE is',ysoln)
print('Eq stands for "Equation". Arguments are LHS and RHS.')
```

The solution to the ODE is $\mathrm{Eq}\left(\mathrm{y}(\mathrm{t}), \mathrm{C1*} \exp \left(\mathrm{a}^{*} \mathrm{t}\right)\right)$
Eq stands for "Equation". Arguments are LHS and RHS.

Example 1 (part b): If $y(0)=10$, we can use the ics option to solve an IVP

```
In [5]:
ysoln=dsolve(deq, \(y(t)\), ics=\{y(0):10\})
print('The solution to the IVP is',ysoln)
The solution to the IVP is Eq(y(t), 10*exp(a*t))
```

Example 3: Find the values of r for which $y=t^{\wedge} r$ is a solution to the ODE $t^{\wedge} 2 y^{\prime \prime \prime}-4 t y^{\prime \prime}+4 y^{\prime}=0$

In [6]:

```
\(r, t=s y m b o l s(' r t ')\)
\(\mathrm{y}=\mathrm{t} * \mathrm{r} \mathrm{r}\)
LHS \(=t * * 2 * \operatorname{diff}(y, t, 3)-4 * t * \operatorname{diff}(y, t, 2)+4 * \operatorname{diff}(y, t)\)
print('Equation becomes',LHS,'=0, or ',LHS.factor(),'=0')
\# Solution seems obvious, but will solve in Python to confirm
r_soln=solve(LHS, r)
print('Values of \(r\) are',r_soln)
\# Confirming with dsolve
y=Function('y')
LHS \(=t * * 2 * \operatorname{diff}(y(t), t, 3)-4 * t * \operatorname{diff}(y(t), t, 2)+4 * \operatorname{diff}(y(t), t)\)
dsolve(LHS,y(t))
```

Equation becomes $-4 * r^{*} t^{* *} r^{*}(r-1) / t+r^{*} t^{* *} r^{*}\left(r^{* *} 2-3 * r+2\right) / t+4 * r^{*} t * *$
$r / t=0$, or $r^{*} t^{* *} r^{*}(r-5) *(r-2) / t=0$
Values of r are [0, 2, 5]
Out[6]: $y(t)=C_{1}+C_{2} t^{2}+C_{3} t^{5}$

Example 4: Object dropped from rest. Forces are the weight of the object (mg) and air resistance (c v). By Newton's Second Law, $F=m a=m g-c v$, or $m v '=m g-c v$ and the initial condition is $v(0)=0$ ("from rest")

In [10]:

```
t,m,g,c=symbols('t m g c')
v=Function('v')
deq=m*diff(v(t),t)-m*g-c*v(t) # moved everything to one side
vsoln=dsolve(deq,v(t),ics={v(0):0}) # assumed deq = 0
print('The solution to the ODE is',vsoln.expand())
# General solution without the initial condition:
gensoln=dsolve(deq,v(t))
print('Without the initial condition, the solution is',gensoln.expand())
print('Note that exp(C1*c/m) is also an arbitrary constant and can be repla
ced with C1')
```

The solution to the ODE is $\mathrm{Eq}\left(\mathrm{v}(\mathrm{t}), \mathrm{g}^{*} \mathrm{~m}^{*} \exp (\mathrm{c} * \mathrm{t} / \mathrm{m}) / \mathrm{c}-\mathrm{g} * \mathrm{~m} / \mathrm{c}\right)$ Without the initial condition, the solution is Eq(v(t), -g*m/c + exp(C1*c/ $\mathrm{m}) * \exp \left(\mathrm{c}^{*} \mathrm{t} / \mathrm{m}\right) / \mathrm{c}$)
Note that $\exp (\mathrm{C} 1 * \mathrm{c} / \mathrm{m})$ is also an arbitrary constant and can be replaced wit h C1

Example 5: Direction field. To do this, we need to use the NUMPY package instead of SYMPY.

In [11]: import numpy as np import matplotlib.pyplot as plt

In [12]: matplotlib notebook

In [13]: $T, Y=n p . m e s h g r i d(n p . a r a n g e(-3.1,2.9, ~ .25), ~ n p . a r a n g e(-3.1, ~ 2.9, ~ .25)) ~ \# ~$ adjust domain and range and spacing as needed $\mathrm{dYdT}=1 /(\mathrm{np} \cdot \exp (\mathrm{T})-\mathrm{Y})$ \# put $f(t, y)$ here to find slope
$\mathrm{U}=1 /\left(1+\mathrm{dYdT}^{* *} 2\right)^{* *} 0.5^{*} \mathrm{np}$.ones(T.shape) \# Normalizes the arrows to see near -zero slopes.
$V=1 /(1+d Y d T * * 2) * * 0.5 * d Y d T$
plt.figure()
plt.title('Direction Field for dydt=1/(e^t-y)')
$\mathrm{Q}=$ plt.quiver($\mathrm{T}, \mathrm{Y}, \mathrm{U}, \mathrm{V}$) \# draws the arrows at (X, Y) with slope $d Y d X$

In [14]:
$\mathrm{T}, \mathrm{Y}=\mathrm{np}$. meshgrid(np.arange(0.1, 6.1, . 25), np.arange(-3, 3, . 25)) \# adjus ting to avoid zero denominator $\mathrm{dYdT}=-2 * \mathrm{Y} \#$ put $f(t, y)$ here to find slope $\mathrm{U}=1 /\left(1+\mathrm{dYdT}^{* *} 2\right)^{* *} 0.5^{*}$ np.ones(T.shape) \# Normalizes the arrows to see near -zero slopes. $\mathrm{V}=1 /\left(1+\mathrm{dYdT}^{* *} 2\right) * * 0.5^{*} \mathrm{dYdT}$ plt.figure() plt.title('Direction Field for dydt=-2y') $Q=p l t . q u i v e r(T, Y, U, V)$ \# draws the arrows at (X, Y) with slope $d Y d X$

In [15] matplotlib notebook

We know the solution to $y^{\prime}=-2 y$ is $y=y 0 * e^{\wedge}(-2 t)$ based on the first example. Let's plot a couple of solution curves with the direction field

In [21]:

```
T, Y = np.meshgrid(np.arange(0.1, 3.1, .1), np.arange(-3, 3, .25)) # adjust
ing to avoid zero denominator
dYdT = -2*Y # put f(t,y) here to find slope
U = 1/(1+dYdT**2)**0.5*np.ones(T.shape) # Normalizes the arrows to see near
-zero slopes.
V = 1/(1+dYdT**2)**0.5*dYdT
plt.figure()
plt.title('Direction Field for dydt=-2y')
Q = plt.quiver(T, Y, U, V) # draws the arrows at (X,Y) with slope dYdX
tplot=np.arange(0,3,0.01) # a range of t-values from 0 to 6 with stepsize
    .01
# Let y(0)=1 so solution is }y=\mp@subsup{e}{}{\wedge}(-2t
yplot=np.exp(-2*tplot)
plt.plot(tplot,yplot)
#NOW Let y(0)=-2 so solution is }y=-2\mp@subsup{e}{}{\wedge}(-2t
yplot2=-2*np.exp(-2*tplot)
plt.plot(tplot,yplot2)
plt.ylim(-3,3) # changes the y-range to match the direction field
```


Out[21]: $(-3,3)$
In []: \square

